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Abstract—In recent years, Python has experienced an explosive growth in adoption, particularly among open source projects. While
Python’s dynamically-typed nature provides developers with powerful programming abstractions, that same dynamic type system
allows for type-related defects to accumulate in code bases. To aid in the early detection of type-related defects, type annotations were
introduced into the Python ecosystem (i.e., PEP-484) and static type checkers like mypy have appeared on the market. While
applying a type checker like mypy can in theory help to catch type-related defects before they impact users, little is known about the
real impact of adopting a type checker to reveal defects in Python projects.
In this paper, we study the extent to which Python projects benefit from such type checking features. For this purpose, we mine the
issue tracking and version control repositories of 210 Python projects on GitHub. Inspired by the work of Gao et al. on type-related
defects in JavaScript, we add type annotations to test whether mypy detects an error that would have helped developers to avoid real
defects. We observe that 15% of the defects could have been prevented by mypy. Moreover, we find that there is no significant
difference between the experience level of developers committing type-related defects and the experience of developers committing
defects that are not type-related. In addition, a manual analysis of the anti-patterns that most commonly lead to type-checking faults
reveals that the redefinition of Python references, dynamic attribute initialization and incorrectly handled Null objects are the most
common causes of type-related faults. Since our study is conducted on fixed public defects that have gone through code reviews and
multiple test cycles, these results represent a lower bound on the benefits of adopting a type checker. Therefore, we recommend
incorporating a static type checker like mypy into the development workflow, as not only will it prevent type-related defects but also
mitigate certain anti-patterns during development.

Index Terms—Software Defects, Static Type Checkers, Dynamic Type Systems, Empirical Study.
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1 INTRODUCTION

D YNAMICALLY-typed languages are popular nowadays.
They are easy to learn and allow programmers to

rapidly prototype solutions [28], [37]. Yet, as the complexity
of the codebases increase and developers work collabora-
tively, undisciplined use of dynamic language features can
hinder the comprehensibility of a codebase, and in turn,
hinder the productivity of software engineers. Even basic
questions, such as “What is the return type of this function?”
or “What type does this function expect?” can require a thor-
ough exploration of the codebase to be concretely answered.

Despite the absence of a static type system, type checking
features are now available in dynamically-typed languages
through the use of static type annotations. With the emergence
of language standards that facilitate annotations (e.g. PEP-
484 for Python), type annotation tools like mypy (Python) and
flow (Javascript) have found their way into the market.

While type checking can, in theory, prevent type-related
defects, little is known about their impact on real software
systems. Initial work by Gao et al. [10] found that static
type checkers can detect a considerable percentage (15%) of
public defects in Javascript projects. While prior work has
laid the groundwork for the study of type-related defects in
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dynamically-typed languages, it is limited to the Javascript
ecosystem. Other dynamically-typed languages may have
different characteristics.

In recent years, there has been increased adoption of
Python in open source projects [20]. This rise can partially
be attributed to the explosive growth of machine learning,
for which Python-based frameworks and libraries like Scikit-
Learn, Numpy and Pandas have become common solu-
tions. Python’s dynamic type system and a strong ecosys-
tem of packaged modules empower developers to build
functioning prototypes quickly. However, unlike Javascript,
Python’s primary use case is not web development. In
addition, Python does not have implicit type casting as in
Javascript. Therefore, the nature of type-related defects in
Python projects is likely to be different.

In this paper, we set out to quantify the potential benefits
of applying a static type checker to Python projects. We
operationalize one facet of those benefits by measuring
the percentage of defects that were committed to a source
code repository that could have been prevented if prior
to the commit: (a) type annotations were present; and (b)
the code was validated with a static type checker. Type
annotations or type hints can be added to Python programs
in a non-intrusive manner and do not affect the execution
of Python programs. Static type checkers like mypy use the
information provided by type annotations to perform static
type checking. Mypy allows gradual typing of Python code-
bases; therefore, we can study their impact incrementally by
adding annotations to selected regions of Python programs.
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We conduct an empirical study of all publicly available
defects in 210 Python projects. For each defect in our sample,
we revisit the version of the codebase just prior to the
defect being fixed and add annotations. The annotated code
is evaluated using a static type checker to determine if it
can detect the defect. This data is then used to answer the
following research questions:

RQ1 What proportion of Python defects could have been
avoided by applying type checkers?
Motivation: By having a quantified measure of the
software quality benefits of a static type checker, de-
velopers and project managers can get a clear idea of
the improvements to expect when introducing a static
type checker to a project’s workflow. Therefore, we
strive to quantify the quality benefits of using static
type checkers by measuring the proportion of type-
related defects that could have been prevented if a type
checker like mypy was in use at the time of the commit.
Results: We find that 15% of the corrective defects (11%
of all defects) in Python projects could likely have been
avoided by using a static type checker. Our evaluation
is conducted on fixed public defects. This number is
likely to be higher for private defects observed during
development, when the code has not gone through test
cycles and external code reviews yet.

RQ2 What types of Python defects are being caught by
type checkers? What types are being missed?
Motivation: Usage analytics are a powerful resource
for improving software systems. However, such data
is not available for type checkers like mypy. Without
data to explain which type of defects are being caugh-
t/missed by static type checkers, impactful improve-
ments to type checking tools are difficult to formulate.
Therefore, we collect and analyze data about the type
of defects that are caught/missed by a type checker.
Results: Incorrectly handled null objects are the com-
monly caught type-related defects, while defects re-
quiring code additions/removals and value updates
as fixes are regularly missed by static type checkers.

RQ3 What is the experience level of developers commit-
ting type-related defects?
Motivation: Understanding the experience level of de-
velopers committing type-related defects can help to
better understand the users who stand to benefit most
from the use of a static type checker. This will help tool
developers to tailor their solutions towards a particular
demographic. Thus, in this experiment, we set out to
study the relationship between the experience level of
developers and the occurrence of type-related defects.
Results: We find that there is no significant differ-
ence between the experience of developers committing
type-related defects and the experience of developers
committing non-type-related defects.

RQ4 Which code anti-patterns lead to type-related faults?
Motivation: Developers apply patterns and avoid anti-
patterns when coding. When applied incorrectly, these
patterns can cause faults during development. To
avoid the faults caused by such patterns and to in-
form better adaptation of these patterns, an analysis is
necessary. Therefore, in this experiment, we collect and

analyze patterns of code that are the cause of recurring
type-related faults.
Results: We find that incorrect handling of null values,
dynamic attribute initializations and redefinition of
Python references are a frequent cause of type-related
faults. All of these anti-patterns affect the readability
of large codebases and can be mitigated by the use of
a static type checker.

The results of our study complement the findings of
Gao et al. for Javascript projects [10] who reported that the
use of a static type checker can catch between 11%-18%
of defects in Javascript projects with a median of 15%. We
find that for Python projects, static type checkers can catch
15% of the corrective defects (11% of all defects). Similarly,
a deeper analysis into the types of defects caught/missed
by mypy reveals that incorrectly handled null objects are
commonly caught by type-checkers, whereas defects caused
because of specification changes are commonly missed. Gao
et al. reported similar findings for defects caught/missed by
TypeScript and Flow.

Based on the findings above, and our extra analyses
on type-related faults in Python projects, we recommend
incorporating the use of a static type checker like mypy
into the development workflow. Not only will it prevent
type-related defects from being committed to the codebase,
but also help in mitigating certain anti-patterns that can
potentially lead to public defects.

2 RELATED WORK

Static vs. dynamically-typed languages: Type sys-
tems have been extensively studied in the literature. We are
not the first to compare the usefulness of static and dynamic
type systems [6], [21]. These prior studies compare type
systems along different dimensions: developer productivity,
code usability and code quality.

Stuchlik and Hanenberg [37] conducted an empirical
study on 21 subjects using Java and Groovy and found
that small tasks were completed more quickly in Groovy.
However, no difference was observed for larger tasks.

One of the largest analyses on the topic was conducted
by Hanenberg [13], which included one year of data from 49
programmers. The programmers used either the statically or
dynamically–typed variant of a language that was specifi-
cally designed for the study. The results indicated that static
type systems did not have a significant positive impact on
development time or code quality.

However, more recently Hanenberg et al. [14] ob-
served that static types were beneficial to the maintain-
ability of software systems. In particular, the statically-
typed language used in the experiment outperformed its
dynamically-typed counterpart in terms of understanding
undocumented code and fixing type errors. However, no
difference was observed when fixing semantic errors.

Moreover, Fischer et al. [8] compared the effect of type
systems with respect to the effect of code completion by
using TypeScript and JavaScript in Microsoft Visual Studio.
The experiment measured the time taken to solve partic-
ular tasks, with language and the code-completion as two
independent variables. The results showed a significant dif-
ference between TypeScript and JavaScript, with participants
taking less time when using TypeScript.
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Type-related defects: To the best of our knowledge,
the most closely related work to ours is that of Gao et al. [10],
who studied type-related defects in the context of Javascript
Our study builds upon and complements their work in four
concrete ways. First, we study the Python ecosystem, which
has different characteristics and developer culture than
Javascript. Second, we analyze issue types using Swanson
categorizations [38]. Third, we analyze the experience level
of developers committing type-related defects. Finally, we
analyze the anti-patterns that lead to type-related faults.

Partial type annotations: Bracha [2] proposed the
concept of an optional pluggable type system that is indepen-
dent of the language design. Such a type system, (a) has
no effect on the run-time semantics of the programming
language; and (b) does not mandate type annotations in the
syntax. In such a setting, type-agnostic and type-aware tools
can be used side-by-side.

Siek and Taha [35], [36] formalized the idea of combining
strong and weak type systems by introducing the notion
of a gradual type system. A gradual type system uses the
partial information available about the known parts of types
to detect inconsistencies among types. Typing conditions
that cannot be determined statically are checked at runtime
using casts. To achieve these goals, gradual typing extends
an existing type system with an unknown type. In mypy and
TypeScript, this unknown type is the default type of Any.

Type Inference: Gradual typing is syntactically sim-
ilar to type inference [7], [18], [27]. Both approaches al-
low some type annotations to be omitted; however, type
inference tries to infer the types of objects and rejects the
program if it fails to do so. On the other hand, gradual type
systems accept partial annotations and insert run-time casts
for objects whose types cannot be determined statically.

Type Inference for Python: Several analyses have
been developed to support type inference for Python. Salib
et al. [34] inferred flow-insensitive types based on the Carte-
sian Product Algorithm (CPA). Cannon et al. [3] analyzed
atomic types from the local view of procedures. Rigo et al.
[30] and Gorbovitski et al. [12] optimized Python programs
using abstract interpretation.

More recently, Hellendoorn et al. [15] used a deep learn-
ing model (Deeptyper) to infer types from an aligned corpus
of Javascript and Typescript code snippets. Their results show
that Deeptyper provided thousands of possible annotations
(with over 95% accuracy) that were missed by the static
type checker. An interesting avenue for future work would
be to evaluate the results of the same model on a corpus
of aligned data between Python code and type-annotated
Python code and compare its performance with the model-
based type-inferences discussed above.

Using GitHub as a data source: GitHub has been
widely used as a data source for extracting insights about
the benefits of different features in programming languages
on code quality. Ray et al. [29] conducted a study on a data
set of 729 projects in 17 different languages, observing a
significant relationship between code quality and the use of
languages with strong and static typing.

However, other researchers offered a different perspec-
tive. Berger et al. [1] conducted a replication study of the Ray
et al. paper and discovered factors that were unaccounted
for in the data extraction and analysis phases. By controlling

Listing 1. Code example with defect and the relevant fix
1 class MongoRepository(object):
2 def byLocation(self, locationString):
3 record = self.db.provenance.find_one({’

location’:locationString})
4 ### fix patch
5 #++ if record is None:
6 #++ self.listener.unknownFile(’id: ’+str(uid))
7 #++ return
8 return self.inflate(record)
9

10 def inflate(self, record):
11 if ’duration’ in record:
12 ...

for factors such as sparse data and false-positive rates of
defects, Berger et al. reduced the number of programming
languages with significant results from 11 to 4.

In our study, we have been careful to control for factors
pointed out by Berger et al., such as filtering for language-
related defects and using a random sample for our analysis.

3 PROBLEM DEFINITION

In this section, we present the scope of static type checking
in the context of Python – a dynamically-typed program-
ming language. First, an example is presented to illustrate
the possible defects that static type checkers like mypy can
catch. These defects are then presented in the context of the
type annotations that are needed to catch such defects.

3.1 Motivating example

Listing 1 shows a snippet of Python code from the niprov
project that tracks the provenance of brain imaging files. A
fault is reported at line 11 because the function inflate
expects a dict type as a parameter but instead a None
object was passed. The function find_one returned a None
object for the query and it was passed to inflate directly.
The fix, shown in the comments, handled this defect by
reacting to None objects returned by find_one.

This snippet demonstrates a common problem in
dynamically-typed languages. A developer must study the
implementation or documentation of called functions to
understand the types of accepted parameters and the types
of returned objects. To an extent, developers must violate
the principle of encapsulation to understand if their code
will behave correctly.

Once type annotations are added to the code as shown in
Listing 2, mypy can detect such problems without executing
the code. Mypy will raise a warning for the function call at
line 10, identifying the unexpected type of parameter. Thus,
the defect could have been avoided if a type checker like
mypy was in use at the point of the commit. Furthermore, as
the example shows, the annotations serve as documentation
within the codebase, thereby mitigating the need for looking
into the external documentation or the definition of a called
function or API.

3.2 Type annotations in Python

Type annotations were added to Python in PEP-484 [41].
These type hints are not enforced by the Python runtime.
However, once added, they are available in the abstract
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Listing 2. Code with consistent and inconsistent annotations
1 ##stub example to be placed inside db.provenance
2 def find_one(param)->Union[None, dict]: ...
3

4 class MongoRepository(object):
5 def byLocation(self, locationString):
6 record:Union[None, dict] = self.db.provenance.

find_one({’location’:locationString})
7

8 # inconsistent annotation
9 # record:dict = self.db.provenance.find_one

({’location’:locationString})
10 return self.inflate(record)
11

12 def inflate(self, record:dict):
13 if ’duration’ in record:
14 ...

syntax tree (AST) of the codebase and can be used by any
tool that analyzes the codebase. Type checkers like mypy use
the annotation information in AST to enforce type checking.

There are multiple locations within Python programs
where one can add type annotations. Listings 1 and 2
provide examples of Python objects that can be annotated
using type hints, i.e., function parameters, function return
types and variable initializations. A complete list of the
locations where type annotations may be applied can be
found in the mypy documentation.1

3.3 Defects detectable by static type checkers
First, we define the type of defects that a static type checker
like mypy can catch. We also formally define the type
annotations needed to detect such type-related defects.

Let D = {d1 , d2 , . . . , dm} be a set of defective programs
together with their fixed versions F = {f1 , f2 , . . . , fm} (as-
suming that fi = fix (di) for some function fix ).

Type annotations: Let L be a dynamically-typed pro-
gramming language like Python, and let La be a language
based on L with support for type annotations. Let ann be an
annotation function that maps a program p ∈ L to pa ∈ La ,
such that pa = ann(p). Then mpc(pa) is a type checking
function that returns > (true) if an annotated program pa

is correctly typed using the mypy checker (i.e., no errors are
indicated) and ⊥ (false) otherwise.

The ann function may be an identity function in cases
when no annotations are needed. In these cases, the program
p is passed to mypy without any annotations (pa = p).

Consistency of type annotations: While fault-
triggering annotations can be added in many different ways,
we only consider those that are consistent with the fix.
Annotations are consistent if they trigger type-related faults
when added to a defective version of the program; however,
the same annotations, when used in the fixed version of the
program ann(fix (p)), do not trigger any type-related faults.

The annotation in the comment at line 9 in Listing 2
shows an example of an inconsistent annotation. Adding
a dict to record will trigger a type-related fault in both
the defective version and the fixed version of the program.
Therefore, this annotation is inconsistent with the fix and
thus ignored. On the other hand, the rest of the annotations
in Listing 2 are consistent, resulting in type-related faults
only in the defective version of the program.

1. https://mypy.readthedocs.io/en/stable/getting started.html

More formally, a type annotation ann is consistent when
mpc(pa) = ⊥ and mpc(fa) = >, where pa = ann(p) and
fa = ann(fix (p)).

This consistency filter is necessary to prevent us from
adding ill-formed type annotations. It also serves as a stop-
ping criterion for our annotation efforts. In practice, how-
ever, an annotation might trigger type faults in other regions
of the fixed program fa . This second-order effect may violate
the consistency criterion for our annotations. However, we
believe that these faults will not have happened if type an-
notations had already been in use by the project. Therefore,
we strive to be consistent in our annotations as much as
possible but do not fix type-related faults that are caused
as a second-order consequence of our annotations.

Mypy-detectable defects: The total number of defects
caught by a static type checker is then defined as follows:

Dmpd = {di ∈ D|mpc(ann(di)) = ⊥ ∧mpc(ann(fix(di))) = >} (1)

Effectiveness of mypy: The effectiveness of mypy can
be calculated as the percentage of defects detected by mypy
over all fixed public defects (Dpub fixed i.e. defects that are
reported after the code is deployed to production, and have
a valid fix attached with them.

Dmpd fraction = |Dmpd|/|Dpub fixed| (2)

Dpub fixed is the set of all public defects that are fixed, and
Dmpd contains public defects that are both fixed, and type-
related. Our experiment excludes public defects that are not
fixed (Dpub not fixed), and private defects (Dprivate i.e. defects
observed by a single developer during local development
before the code is deployed to production), which together
form the set of all available defects in Python projects:

Dtotal = Dpub fixed +Dpub not fixed +Dprivate (3)

While mypy can also detect private defects and public
defects that are not fixed, we use public defects that are
fixed (Dpub fixed) in our experiments because they can be
retrospectively validated in a concrete manner.

4 EXPERIMENTAL SETUP

4.1 Corpus collection and filtering

Data source: We use GitHub Archive (GH-Archive)
as our data source [19]. GH-Archive is a database of all
GitHub activities, e.g. opening an issue, closing an issue
or submitting a pull request. The entire database can be
accessed via a public API or SQL queries.

Identifying Python projects: First, we collect the
list of all Python projects available on GitHub. GH-Archive
lists all GitHub repositories along with the programming
language that contributes the most number of bytes to the
project. We filter the repositories in GH-Archive for Python,
which results in 551,366 projects that are predominantly
implemented using Python [11].

https://mypy.readthedocs.io/en/stable/getting_started.html
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Identifying defects in Python projects: Next, we
collect the list of tracked defects in the Python projects. For
this, we select all closed issues that are labelled as defects.

For practical reasons, we restrict our analysis to activity
in the four-year period between 01-01-2015 and 12-31-2018.
The starting point is imposed partly due to changes in the
GitHub API starting from 01-01-2015, and partly because
type hints were officially added to Python in Sep-2014 (PEP-
484) [41]. This filtering method results in 373,742 defects
(recorded in the form of GitHub issue reports). Henceforth
this collection of defects is referred to as the entire corpus.2

Filtering the corpus for Python fixes: The set of
GitHub issues in our entire corpus includes fixes to non-
Python files as well. For instance, an issue in a Python project
identified as a defect, can be a defect in the documentation
with no changes required to Python files. Since these fixes
are out of scope for Python type checkers, we select the
GitHub issues that (a) have an associated pull-request that,
(b) contains changes to at least one Python file. This filtering
criterion yields a filtered corpus of 10,916 Python issue reports,
which spans 1,934 Python projects.

4.2 Sample collection
Our experimental procedure requires intensive manual
analysis. Evaluation of the filtered corpus of 10,916 issue re-
ports presents practical challenges. Thus, we select a sample
of meaningful size, to which we apply our manual analysis.

In drawing a sample for analysis, following the guide-
lines of Krejcie and Morgan [22], we select a sample that is
representative of the filtered corpus with a confidence level
of 95% and a confidence interval of 5%. With a population
of 10,916, a sample of 370 examples is needed to achieve
the desired confidence level and interval. We round the
sample size up to 400 for convenience, randomly selecting
400 issues from our filtered Python corpus.

Sample Statistics: Table 2 provides an overview of
the size of projects in our sampled corpus (Table 1 provides
the stars, sizes and contributors counts of the 210 projects).
The minimum of zero in the Python row is from the
EndlessSky-Discord-Bot project, where all Python files were
removed as part of the fix to the issue report in our sample.
The table shows that the sample includes projects spanning
a broad range of sizes from 332 to 5,735,321 LOC.

The Fix row shows the total number of modifications
(sum of lines added and removed) in the defect-fixing
commit. The sum of lines added and removed is an upper
bound on the actual number of modifications, since a single
modification within a commit is shown as one line added
and one line removed. As shown in the table, most defect-
fixing commits are small, with a median of 33 lines when
compared to the median of 37,290 lines of Python code.

To confirm that the sample and population do not differ
substantially in composition, we compare the distributions
of issues in the top 10 projects in the sample and the
filtered corpus. Table 3 shows these distributions sorted by
the number of issues contributed. As can be seen in the
table, the two distributions are similar, with eight out of ten
top projects appearing at the same rank in both data sets.

2. The entire SQL query used for filtering is available at
https://github.com/eff-kay/mypy-excursion

TABLE 1
The size (measured in LOC), stars and contributors for the 210 unique

projects in our sample, checked out at the latest revision

Min Median Mean Max

Size 2 38,548 162,543 5,735,321
Stars 0 411 3,023 57,170
Contributors 1 57 216.18 5,846

TABLE 2
The size statistics (measured in LOC) of the projects and fixes in our

sample, checked out at the fixed revision

Min Median Mean Max

Python 0 37,290 135,342 762,220
Total 332 95,533 250,551 5,735,321
Fix 0 33 609 47,140

TABLE 3
Projects ranked according to issue distributions. Columns 1 and 2 list

projects from the corpus, columns 3 and 4 list projects from the sample.

Filtered Corpus No. of Issues Sample No. of Issues

1 Ansible 2,339 Ansible 101
2 Pandas 403 Pandas 13
3 Bokeh 325 Salt 11
4 Salt 212 Bokeh 9
5 Ansible-Modules-Core 210 Ansible-Modules-Core 6
6 Tribler 139 Micromasters 4
7 Astrophy 109 Tribler 4
8 Amy 91 Astrophy 3
9 Ansible-Modules-Extras 87 Amy 3

10 Cadaasta-Platform 77 Streamalert 3

Clone the
project

Checkout the
defect-fixing

commit

Checkout the
parent commit
without the fix

Do an initial
run with mypy

Fix the
irrelevant type

errors 

Add
annotations

Validate with
mypy to see if

an error is
detected

Fig. 1. An overview of the steps in our mypy annotation procedure.

Small differences are detected in the tail because 11 projects
contribute three issues to the sample. They are truncated
here for presentation purposes.

Note that the sample of issue reports is only used
in RQ1–RQ3. For RQ4, we analyze the codebases of the
210 unique projects within the sample, with each project
checked out at the latest revision. More details about this
difference in the artefacts can be found in Section 4.6.

4.3 RQ1: What proportion of Python defects could
have been avoided by applying type checkers?

To measure the number of defects that could have been
prevented by using a static type checker, type annotations
are added to the defective regions of code until mypy can
detect errors as shown in Figure 1.

Leveraging fixes: Localizing the defective region in
a program generally requires (re)execution of tests on a



6

Algorithm 1: Type annotation procedure
1 Input: D, The list of sampled defective code
2 Input: mpc, A function that checks whether the input source

code type checks or not
3 Input: fix, A function that applies the fix patch to a defective

codebase
4 Output: O, assessment of all sampled bugs
5 foreach d ∈ D do
6 O:=[D.length];
7 Read the defect report and identify the PatchedRegion;
8 ann:= [] //A mapping that converts an input patch of

code to code with annotations added;
9 foreach Identifier id in PatchedRegion do

10 if mpc(ann(d)) == ⊥ ∧mpc(ann(fix(d))) == >
then

11 O[d] := True;
12 break;
13 end
14 else if author classifies d to be mypy-undetectable then
15 Note down the reason for failing to catch the

defect;
16 Categorize d into one of the undetectable types;
17 O[d]:= False;
18 break;
19 end
20 else
21 if type(id) == FunctionCall then
22 if Function defined in the same file then
23 Annotate the function signature;
24 end
25 else
26 Add a mypy stub for the function

signature;
27 end
28 end
29 else
30 Annotate the identifier;
31 end
32 update ann;
33 end
34 end
35 end

selected set of historical versions of a software system
[4] [40]. In practice, it is difficult to build and test each
selected version, especially in large codebases (see Table 2).
Therefore, we use contextual information from the fixes to
localize the defective regions. In Listing 1, the fix patch in
lines 4-7 implies that the defective code region is within the
byLocation function. Contextual information like this is
used when annotating the codebase.

4.3.1 Annotation tactics

Once the defective region is identified, the defective pro-
gram is executed first using mypy without any annotations.3

By default, mypy assigns a default type of Any to objects
whose type cannot be inferred from the code. For other
objects, an inferred type is assigned at first instantiation
and then enforced throughout the rest of the program. In
practice, this means that after the unannotated run, there
will be errors that are not related to the particular fix that is
being investigated. To mask such unrelated errors, general
type annotations are added.

3. To force mypy to type check the entirety of a function, at least
one type annotation has to exist in the function declaration. Otherwise,
mypy ignores every type check within the function. A typical annota-
tion approach is to set the return type to None or Any.

Modules: The most common type of error in the
unannotated mypy run is the failure to import modules or the
failure to infer object types in external modules. To resolve
these issues, mypy flags, such as ignore-missing-imports and
follow-imports=skip, are used to set all module imports to
Any. If the defective code depends upon objects in some
external module, then mypy annotations are added in the
relevant module and the module is passed explicitly as an
argument in the mypy command.

If the relevant external module cannot be found locally,
custom mypy stubs are created manually for the Python
objects by inferring their type signatures from the online
documentation, our cursory exploration of the object and
its uses throughout the codebase. An online search query
is formulated by (1) detecting the module from which the
object is imported; and (2) combining the module’s identifier
and the object’s identifier. Similarly, the local definition of
an object can be found with the help of any IDE or a
tag traversal tool. We used VSCode’s built-in commands to
identify the local definition of the objects. Furthermore, the
uses of an object within a project can be found by using the
search feature of VSCode. The object’s identifier is used for
the search query in this case.

Mypy stubs: Mypy stubs are typed interfaces for
Python objects. These stubs are useful for creating interfaces
for objects in modules that are difficult to locate and modify
locally. Since our focus is only on the defective region of
code, the rest of the program can be viewed as a set of
typed interfaces that the defective region of code depends
upon. This allows us to minimize our refactoring efforts to
reproduce a type-catchable defect.

Line 2 of Listing 2 provides an example of a mypy stub,
where find_one is an external function with a return type
of Union[None, dict]. Its typed signature is determined
either from its documentation or implementation.

Annotation algorithm: Algorithm 1 presents our
systematic annotation procedure. In summary, the definition
of mypy-detectability described in Equation 1 is used as a
guiding principle for selecting the next possible annotation.
A set of strict heuristics is used for categorizing defects that
are not mypy-detectable (step 14).4

4.3.2 Determining public defects that are actually defects
Our collection of fixed public defects relies upon issue
reports being correctly labelled as defects by the authors.
However, existing literature has shown that nearly 33% of
the reports are incorrectly classified as defects [16]. There-
fore, to get an accurate estimate of the total number of actual
defects present in our sample, we classify the issue reports
into three categories: Corrective, Perfective and Adaptive,
following Swanson’s classification [38]. Table 4 shows the
extended Swanson categorization proposed by Hindle et al.
[17]. To reduce the number of distinct categories, we classify
the three new categories of New Requirements, Source Con-
trol Management and Code Cleanup, as Perfective changes.

Similarly, recent literature has classified defects into
Intrinsic defects, i.e., defects that have a defect-inducing
commit associated with them, and Extrinsic defects, i.e.,
defects that are caused because of external factors, such as

4. github.com/eff-kay/mypy-excursion/tree/appendix/heuristics/

github.com/eff-kay/mypy-excursion/tree/appendix/heuristics/
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TABLE 4
Extended Swanson categorization for classifying defects

Categories of Change Issues Addressed

Corrective Processing failure
Performance failure
Implementation failure

Adaptive Change in data environment
Change in processing environment

Perfective Processing inefficiency
Performance enhancement
Maintainability
New requirements
Source control management
Code cleanup

specification changes [32], [33]. However, the defects that
are fixed by Corrective changes appear to map onto Intrinsic
defects, whereas the defects that are fixed by Perfective and
Adaptive changes are likely caused by Extrinsic factors.

In an ideal case, it would be preferable to extract a
sample from a population of Intrinsic defects from the start.
However, this information is not available in the GitHub
corpus. Therefore, classification is carried out via manual
analysis after an initial sample is collected.

Defect classification: To classify defects using the ex-
tended Swanson categorization, two authors independently
conducted the classifications. Then both authors compared
their results, resolving the differences where an agreement
could be reached. The heuristics used by both authors are
shown in the online appendix. The final categorizations
resulted in a Cohen’s Kappa score of 0.92, which indicates
strong agreement. The remaining differences were resolved
by tie-breaking votes from the other two authors.

We find that the majority (219) of the fixes in our sample
(400) are Corrective, while a large number of the fixes are
Perfective (172) and a small number are Adaptive (9).

4.4 RQ2: What types of Python defects are being
caught by type checkers? What types are being missed?
Defects that can and cannot be caught by mypy are investi-
gated and classified into different categories. Open coding
––– a qualitative research method for categorizing observa-
tions that lack a priori organization [26] ––– is applied to
identify emergent categories. The first two authors indepen-
dently coded all 400 of the issues. In a series of follow-up
meetings, the codes were compared, merged, and refined.

Caught defects: Caught defects are analyzed from
the perspective of the type annotations required to catch
the defect. A type-related defect is usually caused by an in-
correct assumption about the possible type(s) that an object
reference can hold. Therefore, the type annotations required
to fix a defect provides insight into the incorrect assumption
that led to the defect in the first place. Table 5 lists the
possible types of defects caught by static type checkers.

Missed defects: For missed defects, we conduct the
categorization by investigating the fixes attached to the
defects. The fixes provide insight into the type of changes
required to fix the defect.

Since the fixes show that the defect could have been
caused by multiple defective regions of code, the classifi-

TABLE 5
Categories of Caught Defects

Category Description

1 Value defects Value defects are caused because of the
value of an object being misused.

1.1 Optional-none Optional-none defects occur when null
objects are not handled properly.

1.2 False-vs-none False-vs-none are incorrect logical con-
ditions that occur because of the confu-
sion between a boolean value of False
and a null value.

2 Incorrect Type These defects are incorrect assump-
tions about the type of an object.

2.1 General-incorrect-type Defects in this category serve as a
catch-all for all incorrect type defects
not classified in other categories.

2.2 Byte-str-unicode These defects are concerned with incor-
rect string assumptions, more common
in Python2 where unicode characters
and byte strings are handled differently.

2.3 Incorrect-attribute This category includes defects such as
accessing a dictionary attribute that
does not exist.

2.4 Incorrect-signature Incorrect-signature defects happen be-
cause of the incorrect assumptions, ei-
ther about the types of the parameters,
or the return type of a function.

2.5 Int-expected Int-expected defects occur due to the
misuse of int types.

TABLE 6
Categories of Missed Defects

Category Description

1 Spec Changes Specification changes include changes
that modify the semantics of the code
to conform to a certain specification.
It also serves as a catch-all for issues
not classifiable other categories.

1.1 Branch Changes Branch changes represent changes to the
body of a control block.

1.2 New Class or Method This category includes defects that re-
quire a new class or a method as a fix.

2 Value Changes Value changes represent changes that
modify the values of an object rather
than the semantics of the code.

3 Artefact Changes These changes are made to artefact
files that accompany the codebase.

3.1 New Tests This category represents changes
where entire new tests were added
(either as new classes or new methods).

cation is conducted at the change-set level. This means that
one defect report can appear in multiple categories. Table 6
shows a sample of the categories of missed defects (the
complete list can be found in the online appendix). Note that
apart from New Tests and MissingDependency (see online
appendix), all categories contain changes that are beyond
the scope of static type checking.

4.5 RQ3: What is the experience level of developers
committing type-related defects?

In this experiment, we study the experience level of devel-
opers committing type-related defects for mature projects
(with at least 1,000 commits). We measure experience ac-
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cording to commit-based (artifact granularity) and review-
based experience (task granularity).

Project commit experience: To calculate the project
commit experience, we first find the commits at which the
defective lines were added. We use the git-blame command
for this purpose. This command traverses the project’s his-
tory to the point at which a particular line was added to
the codebase. Git-blame is executed for each type-defective
line in the mypy-catchable defects in our sample (see Sec-
tion 4.3). This provides us with a list of defective commits
from which we extract the names of the authors who are
implicated in the lines associated with type-related defects.

The project experience of each author is estimated by
calculating the total number of commits by the author from
the start of the project, to the point at which the type-related
defect was introduced into the project. We use the git-log
command for this purpose. This provides us with a list of
defective commits and the corresponding author-experience
values at the creation time of the defective commit. We filter
out duplicate commits to get a list of unique entries.

As a baseline measure, we also calculate the experience
of authors committing defects that are not type-related. We
use the defective lines that are not part of the type-related
defects to conduct the git-blame part of the experiment. The
rest of the procedure is the same as the one explained above.

File commit experience: In addition to calculating
author experience at the project level, we also calculate
the experience at a file level. The procedure is similar to
calculating project-level experience except that we count
the commits made to a defective file. We use the git-log
command with a follow flag to retrieve commits to files.

Review experience: Thongtanunam et al. [39]
showed that reviewing experience should not be overlooked
when considering code ownership. Therefore, similar to
Thongtanunam et al., we estimate the review-based experi-
ence of developers by counting the number of prior reviews
that the implicated authors participated in.

More concretely, we start with the defective line asso-
ciated with type-related defects. Then, we find the defect-
inducing commit and the defect-inducing author using the
git-blame command. After that, using the GitHub API, we
identify the pull-request to which the defect-inducing com-
mit belongs to. Finally, we traverse backwards from the
defect-inducing pull-request to the first pull-request within
the project, keeping a count of the number of pull-requests
to which the defect-inducing author had served as a re-
viewer. This produces the reviewer experience of the author
at the point of committing the defect-inducing commit.

We repeat the above process for every line, filtering out
duplicated commits, since multiple defective lines can be
part of the same defect-inducing commit. Similarly, as a
baseline measure, we repeat the process for all defective
lines that were not associated with type-related defects.

4.6 RQ4: Which coding anti-patterns lead to type-
related faults?
In this experiment, we analyze the patterns of code that tend
to be associated most with type-related faults. We evaluate
the three projects that contribute the most issues in our
sample, i.e., Ansible, Pandas and Bokeh (see Table 3). These
projects vary in domain, age and size of development team.

To conduct the analysis, each project is checked out
at the latest revision and evaluated against mypy. This
provides us with a list of type-related faults for each file
within the projects. A treemap representing the number of
faults contributed by each file is constructed for all three
projects. The top 20 files in each of the three treemaps are
investigated for repeating code patterns that tend to co-
occur with incidences of type-related faults.

Note that for this particular research question, we are
not analyzing real-world defects, but local faults that a de-
veloper might observe while working with a dynamically-
typed language. We also provide possible annotation strate-
gies for these anti-patterns to help identify such faults.

5 RESULTS

5.1 RQ1: What proportion of Python defects could
have been avoided by applying type checkers?
We find that 43 of the 400 studied defects are type-catchable
using mypy. This is 10.75% of the total defects available in
our corpus (calculated using Equation 2).

As reported in Section 4.3.2, there are 219 Corrective
defects, 172 Perfective defects and 9 Adaptive defects in
our sample. Since mypy was designed to detect type errors,
which would require a Corrective fix, the 181 Perfective and
Adaptive fixes are out of scope for our analysis.

Furthermore, our investigation of mypy-catchable de-
fects leverages information in the fixes to identify type-
catchable defects. However, it is difficult to correctly catego-
rize defects just by looking at their code fixes. Therefore, the
initial investigation is conducted on all defects, regardless
of whether it is a Corrective defect or not. This might result
in some type-catchable defects that are not Corrective.

Therefore, after the initial investigation, we filter the Per-
fective and Adaptive defects out of the sample. This results
in 33 defects that are both type-catchable and require a
Corrective fix. According to Equation 2, the total percentage
of type-catchable defects is calculated to be 33

219 = 15.06%.
Inter-rater experiment: In order to validate the find-

ings of this experiment, a second author independently
reviewed a collection of 86 defects, which included the
43 mypy-catchable defects and 43 randomly selected non-
mypy-catchable defects from the classifications of the first
author. The analysis resulted in a Cohen’s kappa score of
0.83 between the two authors, which indicates an “almost
perfect” agreement [24]. In the rare cases where the authors
disagreed, we conservatively downgraded the labels from
mypy-catchable to non-mypy-catchable.

Summary: 15% of the corrective defects (11% of all de-
fects) in Python projects could likely have been avoided
by using a static type checker.

Extra effort of annotation: To exploit the benefits of
a static type system, developers have to add annotations
to their programs, which may increase development effort.
Since Gao et al. [10] estimate this effort by measuring the
extra tokens added to detect a type-catchable defect, we
replicate this estimate for mypy.

The results of our annotation procedure show that on
average, six annotations are needed to catch a type-catchable
defect (with min, median and max values of 1, 5.04 and
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TABLE 7
Categories of defects that were caught with mypy, and the total number

of defects that belong to each category

Category No. of defects

Optional-none 14
General-incorrect-type 8
Bytes-str-unicode 7
Incorrect-signature 4
Int-expected 3
Incorrect-attribute 3
False-vs-none 2

12, respectively). Unlike Gao et al. [10], we count the an-
notations added by mypy stubs as well. In addition, one
annotation is added when mypy is imported, and a default
return annotation for mypy to act on a particular function.
In practice, these default annotations should already be
available in a codebase that regularly uses mypy.

The annotations span 22 projects, with 95th percentile at
11 tokens, indicating that the number of tokens required to
catch mypy-catchable defects will rarely exceed 11.

Similarly, a time-based analysis was conducted on an-
other randomly selected sample of 100 defects spanning
ten projects. The same annotation procedure as described
in Figure 1 and Algorithm 1 was followed. A timer was
started as soon as the issue report was opened, and stopped
as soon as a conclusion was reached. The results show that
on average 16.24 minutes are required to catch a type-related
defect (with min, median and max values of 2.5, 15.12, 23.97
minutes, respectively).

However, none of these estimation techniques are able to
faithfully measure the actual increase in development effort
caused by adding type annotations for several reasons. First,
the authors were guided by the knowledge of fixes, whereas
in a real-world setting, this knowledge would not exist.
Second, a single token is counted as one unit of cognitive
effort; however, different tokens can impose different cogni-
tive loads for different developers. However, we believe that
this limitation should be mitigated by the time calculation
above. Third, the human subjects that conducted the anno-
tations are not experts in mypy, and therefore might have
used a greater number of annotations to catch a defect than
a subject matter expert would use.

5.2 RQ2: What types of Python defects are being
caught by type checkers? What types are being missed?

Table 7 groups the sampled defects based on the incorrect
assumptions that led to the defect. The table shows that
incorrect null handling (i.e., Optional-none) is the most
commonly caught type-related defect. This is not surprising
given that one must trace the entire life-cycle of an object to
validate whether at any point its value becomes null or not.

The Gen-incorrect-type, which serves as a catch-all for
all type-related defects, is the next most frequently caught
defect. Furthermore, defects related to incorrect usage of text
type are also frequently caught. We believe this is because
in Python-2, text types, such as strings, unicodes, and bytes,
are treated differently, which may confuse developers if the
code is not documented properly.

TABLE 8
Top 5 undetectable defects with mypy, and the number of Corrective,

Perfective and Adaptive defects in each category

Category of Missed defect Corrective Perfective Adaptive

Spec Changes 108 123 6
Branch Changes 80 69 2
Value Changes 74 56 7
New Class or Method 32 58 2
New Tests 39 37 0

On the other hand, Table 8 shows the top five types of de-
fects that are missed by mypy. Unsurprisingly, Specification
Changes are the most commonly missed changes among
Corrective and Perfective defects. Specification Changes are
hard to catch with mypy because they involve moving code
blocks from one region to another thereby making it difficult
to add consistent annotations (see Equation 1).

Among the Adaptive defects, defects requiring Value
Changes occur the most frequently. This is not surprising,
since most Adaptive defects require fixes that modify the
code to handle changes in the external environment. In our
sample, most of the Value Change defects are caused by
changes to the structure of an external payload (APIs), the
design of which is hard-coded in the defective codebase.
Value Changes are difficult to catch with static analyzers
because parsers ignore the values of objects at compile time.

Summary: Incorrectly handled null objects are commonly
caught type-related defects. Defects requiring code block
additions/removals and value updates as fixes are reg-
ularly missed by static type checkers; however, such
defects are beyond their scope.

5.3 RQ3: What is the experience level of developers
committing type-related defects?

Figure 2 shows different beanplots comparing the experi-
ence counts of authors committing non type-related defects
(upper curve) and the experience of authors committing
defects that are type-related (lower curve) along different
dimensions. All distributions are similar in shape (right
skewed). Furthermore, Table 9 shows the quantitative com-
parison of the distributions using the Mann-Whitney U Test
[23] (two-tailed, unpaired, α = 0.05), and the Cliff’s delta
effect size measurement [5]. It can be seen from the table that
the null-hypothesis (i.e. pairs of samples are drawn from
the same distribution) cannot be rejected, for all types of
experiences. Moreover, from the Cliff’s delta column, we can
summarize that the practical difference between the samples
for all experience counts is negligible.

Summary: There is no significant difference between the
experience of developers committing type-related defects
and those committing defects that are not type-related.

5.4 RQ4: Which coding anti-patterns lead to type-
related faults?

This analysis resulted in the following anti-patterns that
frequently lead to type-related faults.
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TABLE 9
Cliffs Delta and Mann-Whitney U Test Results

(Null-hypothesis: Both samples are drawn from the same distribution)

Experience Type Cliffs Delta Mann-Whitney-U Test

Commits-Project-Level 0.080 neg 0.263
Commits-File-Level 0.039 neg 0.377
Review-Experience - 0.034 neg 0.385

100 101 102 103

Experience count of authors when they introduce defects 
 (scaled logrithmically)
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Fig. 2. Beanplot of author experience committing type-related defects
and author experience committing non type-related defects. The dashed
lines indicate the quartile points (25, 50, and 75 respectively)

5.4.1 Redefinition of Python objects
The redefinition of objects for different use cases through-
out the life-cycle of a program is a common pattern in
dynamically-typed languages. Although this flexibility may
reduce the development time for small prototypes, it can
lead to readability issues when the project grows, or when
multiple developers are involved in the project. Within the
scope of the studied projects, we found three more specific
patterns of redefinition. We describe each pattern below.

“Poor man’s” Strategy design pattern: The Strategy
design pattern [9] allows designers to swap out algorithms
(i.e. strategies) without the need to modify the client of the
algorithm. This is achieved by specifying a base strategy
interface, which each concrete algorithm must implement.
Example: Listing 3 shows an example from Ansible (mod-
ules/system/hostname.py) where the Hostname class has
strategy_class as a parameter. All subclasses that inherit
from Hostname will provide a strategy_class parame-
ter that implements an algorithm of choice as shown by
RHELHostname. In this example, since the first instance of
the strategy_class has a type of UnimplementedStrategy,
a static type checker will throw an error whenever
strategy_class is redefined in any of the sub-classes.

Conditionally defined objects: In this anti-pattern,
a reference is first initialized with an object of type A and
then conditionally reassigned to an object of type B.
Example: Listing 4 shows an Ansible example where Cus-

tomHTTPSConnection is first initialized as None, and then re-
defined as a new class based on the attributes of httplib.

Redefinition within a try-catch block: Similar to the
previous pattern, a type checker will raise a warning if an
object is redefined within a try-catch block.

Listing 3. Code extract: redefinition of objects in the “poor man’s” Strat-
egy design pattern

1 class Hostname(object);
2 platform = ’Generic’
3 distribution = None
4 strategy_class = UnimplementedStrategy
5 # Possible annotation strategy
6 # distribution: Union[None, str] = None
7 # strategy_class: Type[Strategy] = UnimplementedStrategy
8 class RHELHostname(Hostname):
9 platform = ’Linux’

10 distribution = ’Redhat’
11 strategy_class = RedHatStrategy

Listing 4. Code extract: conditional redefinition of objects
1 CustomHTTPSConnection = None
2 if hasattr(httplib, ’HTTPSConnection’) and hasattr(

urllib_request, ’HTTPSHandler’):
3 class CustomHTTPSConnection(httplib.HTTPSConnection):
4 def __init__(self, *args, **kwargs): ...
5

6 ###Possible annotation strategy
7 CustomHTTPSConnection:Union[None, Type[

CustomHTTPSConnectionClass]] = None
8

9 if hasattr(httplib, ’HTTPSConnection’) and hasattr(
urllib_request, ’HTTPSHandler’):

10 class CustomHTTPSConnectionClass(httplib.
HTTPSConnection):

11 def __init__(self, *args, **kwargs): ...
12

13 CustomHTTPSConnection = CustomHTTPSConnectionClass

Example: Listing 5 shows an Ansible example that preserves
backwards compatibility with Python-2 by checking whether
httplib is available or not. The type checker produces a
warning because it explores both try and except blocks.

5.4.2 Initialization of sequence objects
Mypy requires sequence objects, lists or dictionaries to be
explicitly typed by declaring the types of stored elements.
Example: Listing 6 shows an example where mypy will
report an error on line 2 because __path__ is not fully
typed. The type inferred from the code is List, but mypy
requires a full annotation that completely annotates the type
of elements within __path__.

5.4.3 Dynamic attributes
Assigning attributes dynamically to a Python class or a dic-
tionary is difficult for static type checkers to verify because
complete type definition is not available before execution.
Example: Listing 6 shows an example from Ansible
(module utils/six/ init .py), where the attributes of
_MovedItems are initialized dynamically based on the
_moved_attributes list. A type error will be reported on
line 14 because mypy does not recognize that moves has a
dynamically assigned attribute builtins.

5.4.4 Null values
This is one of the most common anti-patterns of type-related
defects (see Section 5.2). In this code pattern, a reference that
may hold a None value is used in a code block that is not
prepared to handle None values.
Example: Listing 7 shows a code extract where mypy will
throw an error on line 7. The find_library function checks
if an object with the given name exists, opens it, and returns
the path; otherwise, None is returned. The typed interface of
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Listing 5. Code extract: redefinition in a try-catch block
1 try:
2 import httplib
3 except ImportError:
4 # Python 3
5 import http.client as httplib #type:ignore
6 ### Fix to mitigate type errors
7 ##import http.client as httpclienttemp
8 ##httplib = httpclienttemp

Listing 6. Code extract: dynamic attribute initialization
1 class _MovedItems(_LazyModule):
2 __path__ = []
3 # annotation fix for 5.4.2
4 #__path__:List[str] = []
5 # annotation fix for 5.4.3
6 #builtins:List[str]
7

8 _moved_attributes = [...]
9 for attr in _moved_attributes:

10 setattr(_MovedItems, attr.name, attr)
11

12 _MovedItems._moved_attributes = _moved_attributes
13 moves = _MovedItems(__name__ + ".moves")
14 exec_ = getattr(moves.builtins, "exec")

the find_library can be seen at line 1. The CDLL class, on
the other hand, does not expect a None value (see the typed
interface of its __init__ function on line 3).

5.4.5 Python mixins

Mixins are a language concept that allows a programmer to
inject code into a class to expand its functionality. Python
mixins are units of functionality that are encapsulated in
a class, which can be appended to other classes using
multiple inheritance. Since mixins define methods that act
on attributes that are not local, static type checkers will raise
unidentified object errors on the usage of such attributes.
Example: Listing 8 shows an example of a Python mixin
from the Pandas project, where ExtensionOpsMixin is a
mixin that assigns a class method _create_arithmetic-

_method to the default add operation for the client class
(lines 6–7). BaseMaskedArray then combines the mixin with
the ExtensionArray type client class (lines 9–10). The
_create_arithmetic_method is defined by the relevant con-
crete classes that inherit from BaseMaskedArray, thereby
creating a custom add operation for themselves.

Since create_arithmetic_method is not defined within
ExtensionOpsMixin, an error is reported.

5.4.6 Patterns that lead to defects in production

The patterns discussed above cause faults during develop-
ment before the code is deployed. They may not lead to
defects in production, which is the point of discussion in
the previous RQs. To find out if these patterns do lead to
defects in production, we look for the patterns in the mypy-
catchable defects in our sample studied in RQ1.

Table 10 presents the results of this analysis, which
shows that incorrectly handled null values are a common
cause of type-related defects in production, followed by the
reference redefinition and dynamic attribute initializations.
Type mismatch serves as a catch-all for defects not catego-
rized into any of the other patterns.

Listing 7. Code extract: incorrectly handled None value
1 def find_library(name)->Union[str, None]:...
2 class CDLL(object):
3 def __init__(self, name:str, mode=DEFAULT_MODE, handle=

None, use_errno=False, use_last_error=False):...
4

5 libssl_name = ctypes.util.find_library(’ssl’)
6 # libssl_name: Union[str, None] = ctypes.util.find_library

(’ssl’)
7 libssl = ctypes.CDLL(libssl_name)

Listing 8. Code extract: Python mixin
1 class ExtensionOpsMixin:
2 # Fix to mitigate type errors
3 # @classmethod
4 # def _create_arithmetic_method(cls, op): ...
5 @classmethod
6 def _add_arithmetic_ops(cls):
7 cls.__add__ = cls._create_arithmetic_method(

operator.add)
8

9 class BaseMaskedArray(ExtensionArray, ExtensionOpsMixin):
10 ...
11 class IntegerArray(BaseMaskedArray):
12 @classmethod
13 def _create_arithmetic_method(cls, op): ...

Summary: Incorrect handling of null values, dynamic
attribute initializations and the redefinition of Python
references are frequent causes of type-related faults. Ref-
erence redefinition is a bad practice in general, and affects
the readability of a large codebase. Type checkers help to
mitigate such code quality anti-patterns.

6 PRACTICAL IMPLICATIONS

Static type checkers can improve software quality:
The results of RQ1 show that 11% of all defects (15%
of the Corrective defects) could have been avoided if a
type checker had been in use at the point of the commit.
This result complements the findings of Gao et al. [10] for
Javascript projects, who showed that static type checkers can
catch around 15% of the defects.

The 11-15% of defects caught by mypy is an underestima-
tion of the improvements brought upon by type checkers. By
enforcing type axioms during development, type checkers
can reduce the number of unit tests required for validating
types. Moreover, type checkers enforce type annotations,
which can improve readability, and enable better code com-
pletion and navigation.

Correctly handling null objects can address a large
proportion of type-related defects: As discussed in RQ2,
incorrectly handled null objects account for a large pro-
portion of the type-related defects caught using mypy (i.e.
14
43 = 32.55%). A similar observation was made by Gao

TABLE 10
Occurrences of anti-patterns in the sample

Pattern Counts

unmapped: type mismatch 15
null values 12
redefinition 9
dynamic attributes 6
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et al. when comparing TypeScript 2.0 (which employs null-
checking) with TypeScript 1.8 (which does not). They ob-
served an increase of 58% in the number of defects caught
by TypeScript 2.0. This implies that just by correctly handling
the null values, one can significantly reduce the number of
type-related defects in dynamically-typed languages.

The confusion between bytes, string and unicode
contributes to a large number of type-related defects
in Python projects: As shown from Table 7, bytes-str-
unicode is the third largest category among caught type-
related defects. These defects are common in Python-2 code-
bases where the boundary between bytes and unicode
is blurred. In Python-2, str is an abstract type that stores
objects as bytes but can also be overloaded to store objects
as unicode. Furthermore, an expression involving both
bytes and unicodes suffers from implicit conversion,
which can lead to confusion about actual types. Python-
3 avoids this confusion by storing str objects strictly as
unicode and introducing a new bytes sequence class. This
clear separation of boundaries catches the unicode-byte
mismatch errors at static analysis time.

These defects are unique to Python projects and were not
reported by Gao et al. for Javascript projects.

Static type checkers can mitigate anti-patterns dur-
ing development: Table 10 lists the anti-patterns that can
most commonly lead to type-related defects in Python
projects. The table shows that in addition to the issues
caused by incorrectly handled null objects, reference redef-
inition and dynamic attribute initialization can also lead to
defects in production. Reference redefinition is a bad pro-
gramming practice in general and affects the readability of
the codebase, whereas dynamic attribute initializations can
lead to increases in debugging time because the attributes
are only available at runtime. The use of static type checkers
will mitigate these anti-patterns during development.

7 THREATS TO VALIDITY

Construct validity: Our analysis may detect a
smaller number of type-catchable defects than in reality
due to the strict criterion defined in Equation 1. Further-
more, since fixes are used to localize the defective regions,
this limited annotation scope will omit defect-triggering
annotations that are outside the scope identified by the
fixes. This constraint is intentional as it serves as a good
termination criterion on the time spent in annotating the
code. Nonetheless, our observations should be interpreted
as lower bounds rather than precise measurements.

Furthermore, leveraging fixes to localize the defective re-
gion implicitly assumes that developers will know about the
defective region at the time of the commit. This assumption
is practical, since most commits are likely to be small as
shown in Table 2 (median of 33 lines).

Moreover, a variant of the SZZ algorithm [42] was used
to determine the experience level of developers, which
suffers from some known limitations [31]. These limitations
were mitigated using a set of filters identified by McIntosh
and Kamei [25]. More concretely, code comments and white
space changes were not considered as part of the set of
defective lines. In addition, defective lines committed after
the date of original issue report were also filtered out.

Finally, defective lines added as part of large change-sets
(greater than 10,000 lines or 100 files) were also filtered out.

Internal validity: Our type annotation procedure
from Section 4 was performed manually by authors who are
not experts in mypy. If a defect was not detected using type
annotations, then it was conservatively categorized as not
mypy-detectable. A more precise type-annotation procedure
carried out by a subject matter expert may yield more
accurate results. Again, we encourage the reader to interpret
our observations as a lower bound for the number of mypy
catchable defects rather than an exact count.

External validity: To mitigate threats to external
validity, we uniformly sampled issues from Python projects
available on GitHub Archive. We do, however, restrict our
analysis to the four-year period from 01-01-2015 to 12-31-
2018, as explained in Section 4.1.

Our corpus is composed of fixed public defects, which is
a subset of all Python defects. We use public defects because
they are observable. We believe that this should not affect
mypy-detectability, since despite our inability to study them,
mypy can detect private defects as well.

8 CONCLUSION

In this paper, we study static type checking in the context
of Python codebases. We find that 15% of the corrective
defects in Python projects (11% of all defects) can be avoided
by using a static type checker. In addition, we observe
that incorrectly handled null objects and reuse of Python
references are the main causes of type-related defects. Fur-
thermore, we find that there is no significant difference
between the experience of developers committing type-
related defects and the experience of developers committing
defects that are not type-related. Moreover, we provide a
collection of anti-patterns in dynamically-typed languages
that commonly lead to type-related faults, which to the best
of our knowledge, have not been studied before.

All experimentation artefacts can be found at https://
github.com/eff-kay/mypy-excursion.
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