
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 1

Code Cloning in Smart Contracts on the
Ethereum Platform: An Extended Replication

Study
Faizan Khan∗ , Istvan David∗ , Daniel Varro , Shane McIntosh

Abstract—Smart contracts are programs deployed on blockchains that run upon meeting predetermined conditions. Once deployed,
smart contracts are immutable, thus, defects in the deployed code cannot be fixed. As a consequence, software engineering
anti-patterns, such as code cloning, pose a threat to code quality and security if unnoticed before deployment. In this paper, we report
on the cloning practices of the Ethereum blockchain platform by analyzing 33,073 smart contracts amounting to over 4MLOC. Prior
work reported an unusually high 79.2% of code clones in Ethereum smart contracts. We replicate this study at the conceptual level, i.e.,
we answer the same research questions by employing different methods. In particular, we analyze clones at the granularity of functions
instead of code files, thereby providing a more fine-grained estimate of the clone ratio. Furthermore, we analyze more complex clone
types, allowing for a richer analysis of cloning cases. To achieve this finer granularity of cloning analysis, we rely on the NiCad clone
detection tool and extend it with support for Solidity, the programming language of the Ethereum platform. Our analysis shows that
most findings of the original study hold at the finer granularity of our study as well; but also sheds light on some differences, and
contributes new findings. Most notably, we report a 30.13% overall clone ratio, out of which 27.03% are exact duplicates. Our findings
motivate improving the reuse mechanisms of Solidity, and in a broader context, of programming languages used for the development of
smart contracts. Tool builders and language engineers can use this paper in the design and development of such reuse mechanisms.
Business stakeholders can use this paper to better assess the security risks and technical outlooks of blockchain platforms.

Index Terms—Code cloning, Smart contracts, Ethereum, Blockchain, Empirical Study

F

1 INTRODUCTION

Blockchains offer a novel computation paradigm for dis-
tributed systems, where information has to be stored with-
out the possibility of modification. Smart contracts are soft-
ware programs deployed on a blockchain. Once deployed,
these programs are immutable and execute for as long as the
platform is active. Due to its immutable nature, repair in the
deployed code is not possible as the modified source code
needs to be redeployed as a new instance. As a consequence,
bad software engineering practices pose more severe threats
in blockchains than in traditional software settings. Vulner-
abilities in smart contracts can result in substantial financial
repercussions, as the majority of deployed smart contracts
are written for financial applications [1].

A particular bad practice that can deteriorate many func-
tional and extra-functional properties (e.g., security, reliabil-
ity, and performance) of a software system is the abundance
of duplicated source code, also known as code cloning. Code
clones can be commonly found in software systems. Studies

• F. Khan and D. Varro are with the Department of Electrical and Computer
Engineering, McGill University, Canada.
E-mail: faizan.khan3@mail.mcgill.ca, daniel.varro@mcgill.ca

• I. David is with the Department of Computer Science and Operations
Research, Université de Montréal, Canada.
E-mail: istvan.david@umontreal.ca

• S. McIntosh is with the David R. Cheriton School of Computer Science,
University of Waterloo, Canada.
E-mail: shane.mcintosh@uwaterloo.ca

• ∗ F. Khan and I. David contributed to this paper equally.

show that a large proportion of code in software projects (6%
to 50%) is duplicated [2], [3]. Although some benefits of code
cloning exist—such as improved learning curve of APIs
and rapid bug workarounds [4]—unintentional cloning [5]
affects the quality [6] and maintainability [7] of source
code adversely. For example, upon the detection of a bug
in a clone, its copies must be checked for bugs as well.
Such problems are further exacerbated by code similarity
often going beyond simple copy-and-paste [8], rendering
the management of clones a complex problem.

Studies show that clones are ideal targets for refactoring
aimed at improving the design of the software [9]. Despite
the apparent benefits, the use of clone detection tools is
limited in the development of smart contracts. This is partly
attributed to the fact that the majority of clone detection
tools are designed for traditional programming languages
[10], and only limited support exists for the novel class of
programming languages targeting decentralized execution
platforms, such as blockchains. As a consequence, the vast
body of knowledge on clone detection in traditional pro-
gramming languages, such as C, C++, and Java [3], [11],
cannot be exploited in programming languages used for de-
veloping smart contracts, such as Solidity for Ethereum [12].

In this paper, we report on the cloning practices on
Ethereum,1 one of the most frequently used blockchain
platforms. We have designed and carried out a study to
analyze 33,073 smart contracts, containing more than four
million lines of code (MLOC).

1https://ethereum.org/en/

© 2022 IEEE. Author pre-print copy. The final publication is available online at: https://dx.doi.org/10.1109/TSE.2022.3207428.

https://orcid.org/0000-0003-2644-3769
https://orcid.org/0000-0002-4870-8433
https://orcid.org/0000-0002-8790-252X
https://orcid.org/0000-0002-0193-3975
https://ethereum.org/en/
https://dx.doi.org/10.1109/TSE.2022.3207428

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 2

Prior work by Kondo et al. [13], reported an unusually
high 79.2% proportion of code clones on the Ethereum plat-
form. Our work is an extended conceptual replication of [13],
that is, we (i) pose the same research questions; but (ii) use
different methods to answer them; and by that, (iii) refine
and extend the findings of the original study.2

Specifically, in our study, we analyze code cloning prac-
tices at the level of function blocks, as opposed to the file-
level analysis of the original study. To achieve this finer
granularity of cloning analysis, we opt for the NiCad clone
detection tool [14] instead of Deckard [15] which was
used in the original study, and extend it to support Solid-
ity, the programming language of the Ethereum platform.
NiCad has been frequently used for clone detection tasks
in conventional software systems. It has been thoroughly
analyzed and benchmarked in previous studies to identify
optimal configuration settings for detecting clones [16]. We
also extend the scope of potential clone types to better
identify near-miss (Type-3) clones, which can detect clones
with modifications such as changed, added, or removed
statements [17]. We assess the ratio of clones in the code
base by removing clone duplicates, i.e., clones that have
been identified multiple times as instances of different clone
types. This allows for a better understanding of the types of
cloning-related issues in Solidity smart contracts [18]. This
step is explained in detail in Section 5.2.1.

To the best of our knowledge, this paper is the first
to explore cloning in Solidity smart contracts at this finer
granularity and with an awareness of these types of clones.

Results. We corroborate many findings of Kondo et
al. [13], but observe some important differences as well.
Most importantly, we observe that the clone ratio decreases
from 79.2% to 30.13% at the finer level of granularity of
functions. Moreover, we observe that the vast majority of
clones (90%) are Type-1 clones (i.e., exact replicas). This
90% proportion among the clone types tends to be steady
over an extended period of time, while the total num-
ber of clones increases; i.e., smart contract development
practices heavily rely on copy-and-paste mechanisms. Tool
builders and language engineers can use these results to
improve reuse mechanisms in smart contract programming
languages, including, but not limited to Solidity. Business
stakeholders can use this paper to better assess the security
risks and technical outlooks of blockchain platforms.

Fostering replication. The replication package containing
the data and analysis scripts of our study are publicly
available for the independent verification or replication.3

2 BACKGROUND

Clone detection aims to identify repeated code. Clones are
identified based on a similarity relation between their two
respective code fragments. A clone fragment is a sequence
of contiguous lines of code that is similar to another, non-
overlapping sequence of contiguous lines of code. Clones
with similar properties form a clone pair, and when there are
many similar clones, they form a clone class (also referred to
as clone group or clone cluster) [16].

2In the remainder of this paper, we refer to [13] as the original study.
3https://zenodo.org/record/6975351

Clone granularity can be either free or fixed. Free granular-
ity clone detection considers the source code as a whole and
does not make use of syntactic boundaries, such as func-
tions, blocks, or statements [10]. Fixed granularity, however,
incorporates such syntactic units. As such, fixed granularity
provides a more precise estimate of clone ratio, and is more
useful than free granularity in the eventual refactoring of the
duplicated code [19]. Furthermore, clone detectors of free
granularity produce a higher number of false positives [11],
[20], which are code fragments that have been cloned with a
purpose, such as getter/setter methods in Java code. In this
paper, we use a fixed granularity at the function level.

Syntactic clones are identified based on textual program
code, while the identification of semantic clones requires
an analysis of the behavior of the units of code [21]. In
this paper, we focus on syntactic clones, which are further
divided into three types. Type-1 clone fragments are exactly
identical except for variations in whitespaces, layout, and
comments. For example, Listings 1 and 2 would be Type-
1 clones of each other, were their respective source code on
Lines 5 and 7 identical. Type-2 clone fragments include Type-
1 clones, but allow for differences in identifiers, literals, and
data types. For example, Listings 1 and 2 would be Type-2
clones of each other, were the respective assigned values on
Lines 5 and 7 identical. Type-3 clone fragments include Type-
2 clones, but allow code fragments to differ in complete lines
of code, thereby capturing clones with entire lines added or
removed. The number of lines to be tolerated is defined by
the dissimilarity threshold, in ratio with the overall code block.
In our experiments, we set the dissimilarity threshold to 0.3,
which classifies clones as Type-3 if at least 70% of the nor-
malized subsequences match. Accordingly, Listings 1 and
2 are Type-3 clones. They differ on two out of twenty lines,
i.e., a 2

20 = 0.1 dissimilarity or 90% similarity, which exceeds
the threshold of 70%. Identifiers in Type-2 and Type-3 clones
are normalized by performing a renaming strategy. The two
most common renaming strategies are blind renaming, where
all identifiers are replaced with the same key; and consistent
renaming, where identifiers are given a unique key. For
example, the line int sum = 0 is changed to x x = 0 by
blind renaming, and to x1 x2 = 0 by consistent renaming.
Line 5 in Listings 1 and 2 is changed to x = "MT" and x =
"NEM", respectively by both blind and consistent renaming.
Were the variables named differently, e.g., symbol = "MT"
in Listing 1 and sym = "NEM" in Listing 2, blind renaming
would still change them to x = "MT" and x = "NEM";
however, consistent renaming would change them to x1 =
"MT" and x2 = "NEM".

In this paper, we identify Type-1, Type-2, and Type-3
clones. The latter two types are further refined into blindly
and consistently renamed clones (Type-2b, Type-2c; and
Type-3b, Type-3c; respectively). Semantic clones (Type-4) are
beyond the scope of this paper.

Smart contracts are programs that can be reliably executed
by a network of anonymous distributed nodes without the
need for a centralized trusted authority. The collection of
these nodes forms a distributed computing platform called
a blockchain [22], upon which smart contracts are executed.
The name blockchain reflects the fact that transactions (i.e.,
actions initiated by an externally-owned account, such as

https://zenodo.org/record/6975351

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 3

Listing 1: The MT.sol smart contract.
1 contract MT is ERC20Interface, SafeMath {
2 ...
3 constructor(string memory _name) public {
4 name = _name;
5 symbol = "MT";
6 decimals = 18;
7 totalSupply = 500000000000000000000000000;
8 balanceOf[msg.sender] = totalSupply;
9 }

10

11 function transfer(address _to, uint256 _value)public
returns (bool success) {

12 require(_to != address(0));
13 require(balanceOf[msg.sender] >= _value);
14 require(balanceOf[_to] + _value >= balanceOf[_to]);
15 balanceOf[msg.sender] =SafeMath.safeSub(balanceOf[msg.

sender],_value)
16 balanceOf[_to] =SafeMath.safeAdd(balanceOf[_to],_value)
17 emit Transfer(msg.sender, _to, _value);
18 return true;
19 }
20 ...
21 }

a human) within this network are stored in a chain of im-
mutable blocks. One commonly used platform is Ethereum
[12]. Solidity is an object-oriented and statically-typed pro-
gramming language designed for developing smart con-
tracts, influenced by C++, Python, and ECMAScript.

Listings 1 and 2 show code snippets from the MonPay-
Token (MT.sol)4 and NEM token5 smart contracts written
in Solidity. Both smart contracts create a custom token that
can be treated as a virtual currency. The listings show that
the contracts are identical apart from their symbols and the
total supply of tokens. Both of the smart contracts use the
SafeMath contract and ERC-20 interface6 to implement the
Token functionality. There are 20 instances of the same smart
contract being repeated with small changes in our corpus.
Such repetitions pose a threat to the platform, as vulnerabil-
ities in any of these base smart contracts would potentially
affect a large number of smart contracts in production.

3 SUMMARY OF THE ORIGINAL STUDY

Kondo et al. [13] report (i) the amount of cloned Solidity
smart contracts on the Ethereum platform; (ii) the charac-
teristics of clones; and (iii) the overlaps of clones with code
blocks of smart contract libraries (e.g., OpenZeppelin). The
authors analyzed 33,073 smart contracts amounting to about
4 MLOC, and 13 releases of OpenZeppelin7 to answer three
research questions.

3.1 Research questions and major findings

The research questions and key observations from the orig-
inal study are the following.
RQ1. How frequently are verified contracts cloned?
79.2% of the studied contracts are clones. In particular:
16.7% of the studied contracts are Type-1 clones; 43.3% of
the studied contracts are Type-2 clones. Type-3 clones were
considered out of the scope due to their detection still being
actively researched.

4etherscan.io/token/0xa0b469450e78b3a85d828d454696f8e4bd420038
5etherscan.io/token/0xc14db8e15690c28752dbda133f51821402d29f29
6https://eips.ethereum.org/EIPS/eip-20
7https://github.com/OpenZeppelin/openzeppelin-contracts

Listing 2: The NEM.sol smart contract.
1 contract NEM is ERC20Interface, SafeMath {
2 ...
3 constructor(string memory _name) public {
4 name = _name;
5 symbol = "NEM";
6 decimals = 18;
7 totalSupply = 860000000000000000000000000;
8 balanceOf[msg.sender] = totalSupply;
9 }

10

11 function transfer(address _to, uint256 _value)public
returns (bool success) {

12 require(_to != address(0));
13 require(balanceOf[msg.sender] >= _value);
14 require(balanceOf[_to] + _value >= balanceOf[_to]);
15 balanceOf[msg.sender] =SafeMath.safeSub(balanceOf[msg.

sender],_value)
16 balanceOf[_to] =SafeMath.safeAdd(balanceOf[_to],_value)
17 emit Transfer(msg.sender, _to, _value);
18 return true;
19 }
20 ...
21 }

RQ2. What are the characteristics of clusters of similar verified
contracts?

The original study reports on three inferred characteristics:
(i) category, (ii) activity concentration, and (iii) authorship.
In particular: (i) 9 out of the top-10 largest clusters are token
managers; (ii) transaction activity tends to be concentrated
on a few contracts; and (iii) contracts in a cluster tend to be
created by many authors.
RQ3. How frequently code blocks of verified contracts are identi-

cal to those from OpenZeppelin?
About one-third of all 165,005 code blocks extracted from
verified contracts are identical to OpenZeppelin code blocks.
36.3% of the verified contracts include at least one code
block that is identical to an OpenZeppelin code block. 50%
of the code blocks from 26.3% of the verified contracts are
identical to OpenZeppelin code blocks. The ERC-20 Open-
Zeppelin category is the most frequently reused category,
containing code blocks to support the implementation of
token contracts that comply with the ERC-20 standard.
SafeMath.sol is the most frequently reused OpenZeppelin
code file, containing functions that perform mathematical
operations efficiently and safely.

3.2 Approach

Clone granularity and detection tool. Deckard [15], a free
granularity clone detector was used to detect clones be-
tween Solidity code files.

Clone types considered. Type-1 and Type-2 clones were
considered as part of RQ1.

Corpus. The corpus consists of 4,004,543 lines of code,
extracted from 33,073 verified smart contracts. The files
were retrieved from Etherscan8 in July 2018. Etherscan is
an analytics platform for the Ethereum blockchain that
analyzes each block on Ethereum and provides insights on
each deployed contract. The existence of source code on
Etherscan indicates that the source code in Solidity provided
by Etherscan matches the bytecode deployed to Ethereum,

8https://etherscan.io

https://etherscan.io/token/0xa0b469450e78b3a85d828d454696f8e4bd420038
https://etherscan.io/token/0xc14db8e15690c28752dbda133f51821402d29f29
https://eips.ethereum.org/EIPS/eip-20
https://github.com/OpenZeppelin/openzeppelin-contracts
https://etherscan.io

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 4

and therefore, it is considered verified. Thus, the corpus
contains only verified contracts. Verified smart contracts
publish their flattened version on Etherscan. This flattened
version of the source code is referred to as the code file of a
verified contract. No restriction on the transaction number
on the contracts was imposed. The corpus was compared
with 13 releases of OpenZeppelin in RQ3, released between
2016-11-24 and 2018-08-10, with continuous growth in the
size of 1–5 KLOC over time.

4 STUDY DESIGN

In this section, we discuss the design of our replication
study, following the guidelines of Carver [23].

4.1 Type of replication
We have carried out a conceptual replication study [24]. That
is, we test the same research questions on the same corpus,
but use different measures and techniques.

4.2 Motivation for replication
Our work is motivated by the high clone ratio in Solidity
smart contracts reported by the original study being sig-
nificantly higher than clone ratios in traditional software
systems. The figures are suggestive of systemic issues in
the design and methodology of engineering Solidity smart
contracts. Other work [25], [26] confirms this unusually high
rate of clones. Such unusual figures have to be verified
by independent studies, especially because (i) the cost of
performing a transaction or executing a smart contract is
proportional to its size,9 and thus, minimizing the size of
smart contracts can result in direct cost reduction; and (ii)
the majority of smart contracts are deployed in financial
applications, and thus, vulnerabilities might have serious
financial repercussions [27]. Furthermore, the approach of
the original study is often prone to false positives due to the
free clone granularity it relies on (see Section 2). Therefore,
we set out to replicate the analyses of the original study
using a fixed granularity at the function level. We conjecture
that this new viewpoint from which cloning can be observed
also enhances the applicability of the results in refactoring
processes aiming to eliminate duplicated code.

4.3 Level of interaction with the original researchers
Ours is an external replication, i.e., the original researchers
were not involved in the replication [23]. The interaction
with the original researchers was restricted to inquiring
about the study’s data and receiving the data package along
with technical pointers regarding its structure.

4.4 Changes to the original study

Clone granularity and detection tool. We approach clone
detection with a fixed granularity, fixing our scope at the
function level. Due to the lack of support for fixed granular-
ity analysis by the clone detection tool used in the original

9See the documentation of Gas, the unit of computational effort
required to execute operations on the Ethereum platform at https://
ethereum.org/en/developers/docs/gas/.

study (Deckard [15]), we rely on the NiCad clone detec-
tion tool [14]. NiCad does not support Solidity out-of-the-
box. Therefore, we contribute a custom Solidity grammar,10

which makes our analysis and other future work possible.

Clone types considered. In addition to the Type-1 and
Type-2 clones that the original study reports on, we also
include Type-3 clones in our scope. Furthermore, to refine
our reporting, we (i) split Type-2 and Type-3 clones into
subtypes based on the renaming strategy that has been
applied in the specific clone detecting case; and (ii) provide
a systematic process to remove duplicated clones.

5 EXPERIMENTAL SETUP

In this section, we present our experimental setup. As
shown in Figure 1, our study is composed of three phases.

5.1 Tool configuration and clone detection
In this phase, we select the clone detector for our study and
configure it (Section 5.1.1), develop a grammar to support
clone detection in Solidity smart contracts (Section 5.1.2),
carry out the clone detection (Section 5.1.3), and download
the releases of OpenZeppelin to be analyzed (Section 5.1.4).

5.1.1 Tool selection and configuration
We set out to select a clone detection tool that was (i)
freely available and (ii) customizable. While there exists a
long list of freely available clone detection tools [16], we
found NiCad being easily customizable for our purposes.
NiCad is a text-based clone detection tool that was primarily
designed to detect near-miss clones. It has been widely used
for clone detection studies, thanks to its high precision and
high recall for detecting near-miss clones [16], [28]. Follow-
ing the suggestions of Wang et al. [29] and the settings used
by Hasanain et al. [3], we set the granularity threshold to
10 LOC and the dissimilarity threshold for Type-3 clones to
0.3. These are also the default settings of NiCad.

5.1.2 Grammar development
To conduct our experiment, we extended NiCad with a
grammar to enable the parsing of Solidity source code.
Our grammar10 is inspired by the grammar for Solidity
available in ANTLR.11 In order to extract a parse tree,
NiCad expects a context-free grammar for the source-code
language to be provided in a TXL grammar format [30]. TXL
is a programming language for rule-based transformations.
The TXL grammar not only provides the correct input for
parsing, but also provides special markers, such as indent,
extent, and newlines for pretty-printing the source code.

5.1.3 Clone detection
The clone detection of NiCad consists of (i) parsing and
extraction of potential clones, (ii) pretty-printing and nor-
malizing, and (iii) clone clustering.

Parsing and extraction of potential clones. NiCad extracts
a parse tree representation from the source code, filters out

10The grammar is available at https://github.com/eff-kay/nicad6.
11https://github.com/antlr/grammars-v4/tree/master/solidity

https://ethereum.org/en/developers/docs/gas/
https://ethereum.org/en/developers/docs/gas/
https://github.com/eff-kay/nicad6
https://github.com/antlr/grammars-v4/tree/master/solidity

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 5

Metadata extraction and preprocessingTool configuration and clone detection Analysis and reporting

Soldity grammar Author data

Corpus

Creation dates

Data pre-
processing

Analysis

Raw clone data

Clone detection

Grammar
development

Metadata
extraction

Duplicate
removal

Clone data

Comparison Reporting

Findings

Observations
(original study)

Preprocessed data

Tool selection &
configuration

OpenZeppelin releases

OpenZeppelin
code analysis

Comparison
results

Figure 1: Overview of the study.

irrelevant blocks, performs normalizations, and transforms
the parse tree back to source code. We developed pretty-
printers for the grammar to ensure that all functions are
evaluated consistently. The basic rules of pretty-printing are
the following: (i) function signatures appear on a single
line; (ii) block parentheses follow the ECMAScript standard;
and (iii) every complete statement appears on its own line.
A block of at least ten lines of normalized source code is
considered for regular clones because according to previous
studies, this is the best threshold value for the NiCad tool to
detect code clones from Java and C source code [29]. Most
studies of clone detection consider code clones of less than
five LOC to be false positives [20] or micro-clones [31], [32],
[33] – an entirely different type of copy-pasted artifact.

Flexible pretty-printing and normalization. In addition
to pretty-printing, NiCad is capable of context-sensitive
normalizations, i.e., normalization based on the context of
the code fragment. For this initial exploration, we use the de-
fault normalization settings of NiCad. NiCad detects clone
pairs in this step by performing a line-wise comparison of
the normalized code snippets.

Clone clustering. Finally, NiCad conducts a basic cluster
analysis of the clones identified to combine similar clone
fragments into the same clone cluster. Clones in the same
cluster belong to the same clone class.

Corpus. We use the corpus of the original study,12 described
in detail in Section 3.2. The corpus contains 33,073 verified
smart contracts, amounting to 4,004,543 lines of code. By
using verified contracts deployed to Ethereum, we can be
sure that the corpus is representative of code in production.

5.1.4 OpenZeppelin code analysis

We download the contracts of the twelve releases of Open-
Zeppelin that were analyzed by Kondo et al. [13]. We use
NiCad to extract contract and function blocks from the
corpus as well as from the OpenZeppelin releases. As ex-
plained in Section 5.1.3, the extraction of contracts by NiCad
normalizes the source code within each code-block. Then,
we calculate unique hashes for every code block extracted
from OpenZeppelin releases. We will compare these hashes
with the hashes extracted from the corpus.

12https://github.com/SAILResearch/suppmaterial-18-masanari-
smart contract cloning

5.2 Metadata extraction and preprocessing
In this phase, we preprocess the clone detection results by
removing duplicated clones (Section 5.2.1), extracting meta-
data (Section 5.2.2), and preparing the data (Section 5.2.3)
for the subsequent analysis.

5.2.1 Duplicate removal
Due to the overlapping definition of clone types, some
clones might belong to multiple clone classes conforming to
different types [18]. For example, if two code fragments are
identical, they will also be identical after a blind renaming
procedure is performed on them. Consequently, the class
of Type-2 clone instances that have been obtained by blind
renaming, will contain fragments that are also within the
class of Type-1 clone instances. (See Section 2.) We refer to
this implied containment relationship between clone classes
as the strictness of a clone class. Class Ct of clone instances
of type t is stricter than Ct′ if each clone that belongs to Ct

also belongs to Ct′ . It is directly implied by this definition,
that Ct ⊆ Ct′ . We construct the classes of our approach
based on (i) the type of contained clone instances, and the
renaming procedure. For simplicity, we refer to these classes
by their type and by appending c (consistent) or b (blind) to
the name, depending on the renaming procedure that was
applied while extracting the clones. Equation 1 defines the
relations between the resulting clone classes.

Type-1 ⊆ Type-2c ⊆ Type-2b ⊆ Type-3 ⊆ Type-3c ⊆ Type-3b (1)

We use this hierarchy to remove clone duplicates. The
process iterates through the sets from the strictest to the
weakest, and excludes every clone present in the current
set from the sets that are weaker than the current set. That
is, first, we exclude every Type-1 clone from classes Type-
2c, Type-2b, etc; then, we exclude every Type-2c clone from
classes Type-2b, Type-3, etc; and as the last step, we exclude
every Type-3c clone from class Type-3b.

5.2.2 Metadata extraction
For the 33,073 verified smart contracts in the corpus, we
have collected additional metainformation from the Ether-
scan8 analytics platform. We collect two types of informa-
tion: Creation dates to answer the clone evolution aspect of
RQ1, and Author information to answer the authorship aspect
of RQ2. Both information is extracted from the transaction
log of contracts. In about 3.5% of contracts, the creation date
was not available from Etherscan. Those cases are excluded
from the analyses. We also calculate the length of files in this
phase for further analysis.

https://github.com/SAILResearch/suppmaterial-18-masanari-smart_contract_cloning
https://github.com/SAILResearch/suppmaterial-18-masanari-smart_contract_cloning

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 6

5.2.3 Data preprocessing
To allow for fast analysis in the subsequent phase, we
take care of the computation-intensive tasks of (i) merging
metainformation with the data obtained from the clone
analysis, and (ii) preprocessing the merged data in various
ways. For example, we calculate quarterly figures for RQ1
and calculate Gini-coefficients for RQ2. The preprocessing
scripts are available from the replication package.3

5.3 Analysis and reporting

In this phase, we analyze the data (Section 5.3.1) and carry
out the comparison with the original study (Section 5.3.2).
Finally, we report our findings (Section 5.3.3).

5.3.1 Analysis
We analyze cloning patterns quantitatively. For each re-
search question, we design an analysis and encode it in
automated data analysis scripts in Python. The scripts are
available from the replication package.3

5.3.2 Comparison
We compare our results with the original study by Kondo
et al. [13] by research question. We map our findings (Sec-
tion 6) to the fourteen observations of the original study
and observe whether our findings corroborate the specific
observations (Table 5).

5.3.3 Reporting
Finally, we conduct a narrative synthesis [34] to synthesize
the main findings from the analyses. We conducted multiple
discussions on the findings to formulate conjectures and
hypotheses. We were especially interested in identifying
feasible and actionable directions for the Ethereum/Solidity
community, and for blockchain communities in general.
These discussions are reported at the end of the each sub-
section in Sections 6.1–6.3.

6 EMPIRICAL STUDY ON CODE CLONING

In this section, we present the results of our study by
answering the three research questions.

6.1 RQ1: How frequently are verified contracts cloned?

6.1.1 Approach
To conduct this experiment, we calculate the clone percent-
age as the ratio of the total normalized LOC of clone clusters,
and the total normalized LOC, as shown in Equation 2.

Clone% =
NormLOCcloned

NormLOCtotal
× 100 (2)

where NormLOCcloned is the sum of all cloned lines af-
ter the lines are normalized and the repeated clones are
removed. To calculate NormLOCcloned for a clone cluster,
we count the total number of fragments in the clone cluster
and multiply it by the number of lines.

6.1.2 Findings
Clone ratio. We have observed that 30.13% of the corpus

02 10 20 30 40 50 60 70 80 90 100
Cumulative % of clusters

0.0
10.0
20.0
30.0
40.0
50.0
60.0

80.0
90.0

100.0

71.9

Cu
m

ul
at

iv
e

%
 o

f c
lo

ne
s

Figure 2: Relationship between the proportions of clones
and contracts with two characteristic values highlighted.

Table 1: Clone proportions.

Clone type Proportion

Type-1 27.03%
Type-3 2.05%
Type-2c 0.54%
Type-3b 0.33%
Type-3c 0.15%
Type-2b 0.03%

total cloned 30.13%
clone-free 69.87%

are clones. As shown in
Table 1, 27.03% are Type-
1 clones; 2.05% are Type-3
clones; while Type-2b, Type-
2c, Type-3b and Type-3c
amount to 1.05%. Our exper-
iments show that 89.7% of
all clones (27.03% of the cor-
pus) are of Type-1, i.e., exact
clones.

Clone clusters. A small proportion of clone clusters encom-
pass a large proportion of clones. As shown in Figure 2, 20%
of all clusters encompass 71.9% of all clones; and half of the
clones can be found in just 2.07% of clusters.

Clone evolution. The number of clones among newly cre-
ated contracts continues to increase over time. The amount
of non-Type-1 clones increases proportionally within the
cloned code base. The number of all clones has doubled
quarterly from early 2016 to early 2018, as shown in Fig-
ure 3a. However, the proportion of clones other than Type-1
remained steady after the initial uptick in Q2 2016, as shown
in Figure 3b. That is, the increasing number of code clones
in Figure 3a are predominantly Type-1.

6.1.3 Discussion
We find that the proportion of clones in smart contracts
is 30.13%. This figure is on par with the ones reported
by studies on conventional software systems [2], [35], [9].
However, an important difference with conventional soft-
ware systems is that the source code of deployed blockchain
applications is immutable and therefore, modifications, such
as bug fixes, are not possible after deployment. This, in turn,
amplifies the threat of exploiting vulnerabilities that spread
across the code base by cloning. This mechanism has been
demonstrated, e.g., in the Parity Wallet Hack [36], in which
a malicious agent drained 153,037 ETH (over 428 million
USD at the time of writing) from three high-profile contracts.
However, we also observe that most of the clones in smart
contracts are of Type-1 (27.03% of the overall corpus and
89.7% of all clones), that is, the majority of the functions
are being copied without any modifications. As Tsantalis
et al. [9] report, Type-1 clones are easier to refactor using
existing clone refactoring tools, which suggests that refac-
toring the code base of the Ethereum blockchain platform

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 7

15/3 15/4 16/1 16/2 16/3 16/4 17/1 17/2 17/3 17/4 18/1 18/2
0

5000
10000
15000
20000
25000
30000

Nu
m

be
r o

f n
ew

 c
lo

ne
s

1 37 31 114 255 523 1147 2762
6910

12624

24482
27044all

15/3 15/4 16/1 16/2 16/3 16/4 17/1 17/2 17/3 17/4 18/1 18/2

Quarter

0

(a) Number of newly created clones.

15/3 15/4 16/1 16/2 16/3 16/4 17/1 17/2 17/3 17/4 18/1 18/2
Quarter

0
5

10
15
20
25
30

%
 o

f n
ew

 n
on

-ty
pe

-1
 c

lo
ne

s

5 3

23

10 7 8 6 7 5 5 6

type-3
other

(b) Number of newly created non-Type-1 clones.

Figure 3: Evolution of clone numbers and percentages.

might be feasible. Furthermore, the analysis of clone clusters
suggests that there are hotspots of cloned source code that
should be the primary targets of refactoring. Refactorings
related to inheritance—such as class and method extraction,
method pull up and push down—could be of particular
utility. While inheritance is a supported language feature
in Solidity, it is apparently underutilized, as evidenced by
the high proportion of clones despite the immutability of the
deployed code and demonstrated in Listings 1-2. This might
indicate a need for better tool assistance in recognizing
abstraction/inheritance opportunities.

6.2 RQ2: What are the characteristics of clusters of
similar verified contracts?
6.2.1 Approach
We extract the function identifier within each clone fragment
using a custom regular expression. For Type-1 and Type-
3 clone clusters with no renaming, the function identifiers
are the same for each clone fragment within a clone cluster.
Thus, there is one function identifier per clone cluster. For
the rest of the clone types, the unique function identifiers are
extracted from all clone fragments within a clone cluster.

Bartoletti and Pompianu [1] studied 811 smart contracts
written in Solidity and categorized them by the design
patterns that they apply. We use the same categorization
applied at the function level. In addition, we add a new
category of Helper functions, which broadly includes all
functions not categorized elsewhere. Below, we describe the
three categories that are most relevant to our study.

Token. The code clones in these patterns are used for the
distribution of tokens or fungible goods to users. Token is an
abstract concept that can represent anything that is count-
able and transferable, e.g., shares in a company, outcomes
of an event, etc. DigixGold13 is an instance of the Token
pattern, which tracks the ownership of a fixed amount of
gold by using Tokens. A subset of token managers are

13https://digix.global/#/

Table 2: Top 20 most frequently cloned functions.

Function ID Clone count Category

1 transferFrom 748 Token
2 transfer 610 Token
3 () payable noAnyReentrancy 512 Token
4 buyTokens 398 Token
5 transfer 163 Token
6 buy 140 Token
7 Crowdsale 106 Helper
8 createTokens 98 Token
9 withdraw 98 Token

10 sell 97 Token
11 purchase 81 Token
12 decreaseApproval 78 Token
13 mint 72 Token
14 claimTokens 69 Token
15 finalize 69 Helper
16 refund 64 Token
17 deploy 61 Token
18 tokensOfOwner 57 Token
19 callback 54 Oracle
20 investInternal 46 Token

authorization contracts. The function of the code clones in
this category is to evaluate the authorization of the caller.
With any transaction, one needs to check whether the parties
invoking the transactions are permitted to do so.

Oracle. Some smart contracts require data from outside
the scope of the blockchain, e.g., to determine the latest
posted exchange rate for the US dollar. For this purpose,
a collection of special smart contracts, called Oracles have
been created for the Ethereum platform. Oracle smart con-
tracts provide hooks to the outside world, which allows
an external service to update the state of the Oracle. This
allows Oracles to act as stable interfaces between the outside
world and other smart contracts. In practice, a non-Oracle
smart contract queries the Oracle smart contract, instead of
querying an external service. On the other hand, an external
service sends a transaction to the Oracle when an update to
the data encapsulated by the Oracle is requested.

Helper functions. This category includes functions
that serve as wrappers around existing functions. Smart
contract-specific functions, such as initialize and migrate also
belong to this category. The category can be considered as a
collection of functions not categorized elsewhere.

6.2.2 Findings

Cloned functionality. Table 2 lists the 20 functions of the
code base that contain the most clones. 17 of the 20 contracts
are Token-related, i.e., they provide functionality for the
management and provision of contacts, such as buy, sell,
withdraw, refund, etc. These functions have the same intent
as the transfer and transferFrom functions. Another group
of functions, including createTokens, mint, and deploy, are all
variants of a mechanism for increasing the supply of Tokens
available for a smart contract.

The second most frequent category are Helpers. Crowdsale
is a common Helper function that is used to set the initial
conditions for carrying out a crowdsale operation. Crowd-
sale is a method of flash sale where a number of tokens are
allocated to be sold within a time window. The presence
of this function is not unexpected, as a large number of

https://digix.global/#/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 8

type-1 type-2c type-3 type-3b
0.0

0.2

0.4

0.6

0.8

1.0
Gi

ni
-c

oe
ffi

cie
nt

Overall
0.0

0.2

0.4

0.6

0.8

1.0

(a) Gini-coefficient of clone clusters (with at least 10 clones).

type-1 type-2c type-3 type-3b
0

20

40

60

80

100

Ra
nk

 p
er

ce
nt

ag
e

Overall
0

20

40

60

80

100

(b) Relative rank of the most active contract.

Figure 4: Clone clusters (with at least 10 clones) and the
activity of the related contracts.

smart contracts are written to conduct Initial Coin Offerings
for raising capital for projects. Similarly, finalize is another
Helper function, with the purpose of terminating the crowd-
sale initiated by the previous function.

One of the top 20 categories is the Oracle functionality,
specifically, the callback function. As the name suggests,
the purpose of this function is to serve as a callback function
to be invoked when an external query is completed. In our
example, the most common calls are made to the Oracle
smart contract. As explained in Section 6.2.1, an Oracle
serves as a doorway between the blockchain and the ex-
ternal world. Therefore, the purpose of queries to Oracles is
to access external data and resources.

Table 3: Gini-coefficients.

Clone type Proportion

Type-1 0.86
Type-2c 0.73
Type-3 0.86
Type-3b 0.77

Overall 0.86

Activity. Following the orig-
inal study, we measured ac-
tivity in terms of the num-
ber of transactions that are
related to contracts. First, we
observe that activity tends
to be concentrated on a few
contracts. We use the Gini-
coefficient [37] as the measure
of inequality among transactions related to clone clusters. A
Gini-coefficient of 0 indicates no inequality among values,
while a value of 1 indicates maximal inequality. To obtain
meaningful results, we investigate clusters with at least ten
clones. As Table 3 and Figure 4a show, the overall Gini-
coefficient of the clone clusters is 0.86. Second, the medians
in Figure 4b show that in 50% of the cases, the most active
contract was created before 66.7% of contracts in the same
clone cluster. (The proportion above the median line in the

0.00579 0.2 0.4 0.6 0.8 1
Normalized cluster size

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

En
tro

py

10

20

30

40

50

60

70

80

Nu
m

be
r o

f c
on

tra
ct

s

Figure 5: Distribution of authorship entropy with the me-
dian entropy highlighted.

Overall case is 66.7%.) This number is higher in Type-2c
clones, where 50% of affected contracts were created before
90.91% of the rest of the cluster.

Authorship. Contracts in a clone cluster tend to be created
by many authors. We measure this observation by the nor-
malized Shannon-entropy [38] within a cluster. Maximum
entropy (1.0) is measured for distributions with elements of
uniform probability, i.e., in clone clusters with contracts that
have equal transactions. The less uniform the probabilities
of elements in a distribution, the lower the entropy. To ob-
tain meaningful results, we once again investigate clusters
with at least ten clones. As Figure 5 shows, the median
entropy in our sample is 0.7, while the median normalized
cluster size is close to zero (0.058). This means the average
cluster is relatively small compared to the largest clusters
while showing high entropy, i.e., a large variance in the
authors. The darker area in the bottom-left corner shows
that the majority of clone clusters have high entropy.

6.2.3 Discussion
Out of the functionality that is subject to frequent cloning,
token management contracts, including authorization, pose
the most pressing issue. A detailed look at the cloned func-
tions reveal that basic transaction functions such as transfer
and createTokens are among most frequently cloned. Provid-
ing a library of secure transfer primitives could simplify
the development of such functionality. From a language
design point of view, declarative and verifiable language
constructs have been identified as potential enablers to a
more secure design of smart contracts [39]. The benefits
of such techniques have been demonstrated in blockchain
languages, such as Pact and Liquidity.

The relatively high Gini-coefficients suggest that activ-
ity within a cluster tends to focus on a small number of
contracts. The overall Gini-coefficient of 0.86 is roughly
equivalent to a cluster of ten contracts with nine contracts
having one transaction, and one contract having 250 trans-
actions. Vulnerabilities in such frequently used contracts
are more likely to be identified by malicious attackers. The
effects of such vulnerabilities, in turn, are amplified by code

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 9

Table 4: Top 10 cloned functions from OpenZeppelin.

Function Clone count % of all Contract

1 transferFrom public returns (bool) 15,287 28.43 StandardToken
2 decreaseApproval public returns (bool) 12,021 22.35 StandardToken
3 transfer 11,951 22.22 BasicToken
4 allowance 1,602 2.98 StandardToken
5 approve 974 1.81 StandardToken
6 burn 779 1.45 BurnableToken
7 transferFrom returns (bool) 748 1.39 StandardToken
8 decreaseApproval returns (bool success) 663 1.23 StandardToken
9 burn 612 1.14 BurnableToken

10 TokenVesting 540 1.00 TokenVesting

cloning as the same vulnerabilities can be anticipated in the
contracts of the same clone cluster.

The high entropy in authorship suggests that cloning is
a widespread phenomenon on Ethereum. Such community-
wide bad practices are often addressed by guidelines pub-
lished by community leaders, such as the Python Enhance-
ment Proposal (PEP) 8 style guidelines for Python [40].
However, such general rules cannot be enforced in a
computer-automated fashion, and a better solution could
be establishing community-specific DevOps processes that
include the usage of quality gates enforced by code quality
tools that evaluate contracts that are ready to be deployed.

6.3 RQ3: How frequently are code blocks of verified
contracts identical to those from OpenZeppelin?
6.3.1 Approach
To answer the research question, we identify the code blocks
present in OpenZeppelin releases that are also present in
the corpus. We do so by (i) extracting code blocks from
OpenZeppelin, (ii) calculating their hashes (as explained
in Section 5.1.4), and (iii) comparing those hashes with the
hashes calculated for the code blocks of the corpus.

6.3.2 Findings
Table 4 shows the 10 most commonly cloned functions from
OpenZeppelin, along with their category, the respective
number of clones, and the proportion of these clones in the
overall set of OpenZeppelin (OZ) clones.

Clone proportion. Of all verified contracts, 21.79% have
functions identical to those of OpenZeppelin. As seen in
Table 4, the three most cloned functions encompass 73% of
all clones from OpenZeppelin.

Functionality. Most functions have been defined in the
StandardToken OpenZeppelin contract. Six of the ten most
cloned functions (Table 4) and fourteen of the hundred most
cloned functions belong to this category. Other frequently
encountered categories are SafeMath (10) and VestedToken
(8). The most frequently cloned functionality is related to
transfers, accounting for over 50% of cloned functionality.

6.3.3 Discussion
OpenZeppelin serves as a frequent source of code cloning
on the Ethereum blockchain platform. The high volume of
cloning from OpenZeppelin suggests that mechanisms for
reusing functionality from libraries such as OpenZeppelin

could reduce the number of clones, and improve the main-
tainability of the overall code base. This, in turn, could
improve the extra-functional properties of Ethereum, such
as security, reliability, and integrity. The functionality cloned
from OpenZeppelin tends to concentrate on transfer-related
functionality, and mostly from the StandardToken contract.

7 COMPARISON WITH THE ORIGINAL STUDY

In this section, we provide an overview of how the findings
in Section 6 align with the results of the original study of
Kondo et al. [13]. The mapping between the two studies
is shown in Table 5. For the sake of compactness, we have
presented our results in slightly different groups of findings.
Below we give a detailed explanation.

7.1 RQ1
We have observed the most important difference between
our study and the original study while analyzing RQ1.

Clone ratio. The overall proportion of clones that we
detect (30.13%) is considerably smaller than the proportion
observed in the original study (79.2%). This difference is
due to three factors. First, our analysis is performed at the
function-level, which is a finer granularity and provides a
larger sample of code units that are subject to cloning. Sec-
ond, we count every identified clone once, as explained in
Section 5.1.3. Third, due to the normalization, the clones that
we identify are mainly exact copies, further reducing the
number of instances of less strict clone clusters. However,
as a common treatment in near-miss clone detectors, we
normalize the text of the function blocks using standard
ECMA formatting, as explained in Section 5.1, reducing
the number of false-negatives, and consequently, potentially
increasing the number of identified clones.

We corroborate the high ratio of Type-1 clones but ob-
serve a much larger proportion of Type-1 clones among all
clones. Our experiments show 89.7% of all clones are of
Type-1, as opposed to the 21.1% (16.7% overall) reported
by the original study. This can be explained by removing
Type-1 clones from Type-2 and Type-3 clusters.

The substantial difference between our results and the
original study shows that while 79.2% of contract files might
be affected by cloning practices, it is typically only a subset
of the encoded functionality that is actually cloned.

Clone clusters. The original study found that 20% of
clusters encompass 68% of clones. These figures are nearly

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 10

Table 5: Mapping the findings of the current study to the
observations of the original study.

Finding:
current study

Observations:
original study Comparison

RQ1
Clone ratio Observations 1, 4, 5 Refined – different results
Clone clusters Observation 2 Corroborated
Clone evolution Observation 3 Corroborated & refined

RQ2
Cloned functionality Observations 6, 7 Corroborated – minor diff
Activity Observations 8, 9 Corroborated – minor diff
Authorship Observations 10, 11 Corroborated

RQ3
Clone proportion Observations 12, 13 Refined – different results
Functionality Observation 14 Refined – different results

identical to those that we observe: 20% of all clusters en-
compass 71.9% of all clones; and half of the clones can be
found in just 2.07% of clusters. We conclude that our results
at a finer level of granularity corroborate the findings of the
original study at a coarser level of granularity.

Clone evolution. Since the original study also observed an
increasing trend, we conclude that our results corroborate
the findings of the original study. However, we point out
that different types of clones evolve at different paces.
Specifically, the amount of newly created Type-1 clones is
the predominant factor behind the increasing trend.

7.2 RQ2
We observed minor differences in RQ2 in terms of the cloned
functionality (due to the different levels of granularity of the
two studies), and the activity of cloned contracts.

Cloned functionality. The original study reports that nine
of the ten most populous clusters are related to Token
management. Our finer-grained results also show that nine
of the top ten clusters are indeed Token management func-
tions. Moreover, 17 of the top 20 are Token management
functions. Unlike the original study, we find that the other
top clusters were Helper and Oracle functions rather than
Token Lockers. The Token Locker category of the original
study covers three specific functionalities: lock(), lockOver()
and release(). At the finer level of granularity of functions,
however, these functionalities prove to be less frequently
cloned than at the contract level.

Activity. The original study also observes that transactions
tend to be concentrated on a few contracts, and reports
an overall Gini-coefficient of 0.817. We enhance the prior
observations by adding that Type-2c clones show a lower
Gini-coefficient (0.73). We report slightly different figures
regarding the relative creation date of the most active con-
tracts. In 50% of cases, the top-active contract of a cluster
was found created before 74.7% of other contracts in the
original cluster by the original study, and 63.4% by our finer-
grained study. However, this difference is minor.

Authorship. We observe numbers that are almost identical
to the ones reported by the original study. This means the
authors of cloned smart contract files are the same as the

authors of cloned functions. Therefore, identifying develop-
ers who are responsible for clones can be achieved either at
the function or the contract level with similar results, with
potentially different runtime performance.

7.3 RQ3
We observed relevant differences both in the detected clone
proportion and the cloned functionality. These differences
are due to the finer granularity of our analysis.

Clone proportion. The original study reported that 36.3% of
verified contracts have at least one code block identical to an
OpenZeppelin code block. Our finer-grained results show
that this proportion decreases to 21.79% when analyzing
code similarity at the level of functions with at least 10
LOC; increases to 47.21% when analyzing code similarity
at the level of functions with at least 5 LOC; and increases
to 64.59% when not considering a minimum function length.
These proportions are on par with, and in some cases
exceed the 6–50% cloning rate reported from traditional
engineering domains [2], [3], suggesting security risks.

Functionality. The original study reported that ERC20 is the
most frequently cloned category from OpenZeppelin, and
that ERC20 is more frequently cloned than its concrete im-
plementation, StandardToken. However, our finer-grained
analysis shows that the StandardToken implementation of
ERC20 is more frequently cloned than ERC20. This is not
unexpected because ERC20 is an interface and as such, it
only defines function signatures but no bodies. While ERC20
might be the most cloned contract block, it is the concrete
implementations of ERC20 that that contribute the most
cloned function blocks.

8 RELATED WORK

In this section, we briefly review the related work.

8.1 Empirical studies on smart contracts
Bartoletti and Pompianu [1] conducted a study to analyze
top blockchain platforms and their usages. They analyzed
834 smart contracts written for the Ethereum and Bitcoin
technologies, and grouped the contracts by application do-
main and design patterns that were applied. We use the
same design patterns as the basis for assigning commonly
cloned functions into different categories.

Durieux et al. [41] studied nine automated analysis tools
for Solidity. Automated analysis tools can aid developers
in meeting required functional and extra-functional quali-
tative measures, resulting in better performing, safer and
more reliable code. The authors conclude that state-of-the-
art analysis tools fall short in detecting numerous classes of
vulnerabilities, identifying only 40% of the vulnerabilities
in a testing corpus, and produce a large number of false
positives. These results are corroborated by Ghaleb et al. [42]
who investigated the effectiveness of static analysis tools for
Solidity smart contracts using bug injection. These results
provide evidence that code clones are hotspots of software
issues because they facilitate the spread of faulty code, code
smells, and anti-patterns. The ineffectiveness of analysis

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 11

Table 6: Studies on clone detection in Solidity contracts.

Authors Granularity Method/Tool Clone%

Liu et al. [26] free Birthmarks/EClone N/A
Gao et al.[25] free SmartEmbed14 90%
Kondo et al.[13] free Deckard [15] 79.2%

Our study fixed NiCad [14] 30.13%

tools positions clone detection as a viable technique to aid in
combating the vulnerability of the code base on Ethereum.

Extra-functional properties of blockchains have been
analyzed by Li et al. [43] on security, by Rouhani [44]
on performance, by Scherer et al. [45] on scalability, and
by Belchior et al. [46] on interoperability. These studies
provide evidence of quality-related challenges in blockchain
applications, which are further exacerbated by code cloning.

Application scenarios of blockchain technologies have
been discussed in numerous domains, such as finance [47],
e-governance [48], and healthcare [49], where blockchains
are positioned as a core technology of foundational infras-
tructure. In such contexts, poor quality code that is prone
to defects and vulnerabilities (e.g., code that is copied and
pasted into contexts in which it was never intended to
operate) can have serious repercussions.

8.2 Clone detection in Solidity smart contracts

Table 6 summarizes the studies conducted on clone detec-
tion in smart contracts.

The first known exploration of clone detection in Solidity
smart contracts was conducted by Liu et al. [26]. Their clone
detection approach relies on a custom semantics-preserving
representation of smart contract traits, called birthmarks.
Code similarity is then determined by calculating the statis-
tical similarity between pairs of contract birthmarks. Their
work focuses on the evaluations of the birthmark method in
detecting self-injected clones, rather than the actual rate of
clones in smart contracts themselves.

The SmartEmbed tool was developed by Gao et al. [25]
for detecting clones in smart contracts. The traits of Solidity
smart contracts are encoded by code embedding vectors.
Clones are identified based on the pair-wise comparison of
these vectors. The authors report a clone ratio of 90%, which
is substantially higher than the clone rate of traditional
software artifacts. The exact precision and recall measures
of the tool, however, are not reported.

In contrast, we use NiCad [14] in our study. NiCad
has been frequently used for clone detection tasks in con-
ventional software systems. In addition, NiCad has been
thoroughly analyzed by previous studies for optimum con-
figuration in detecting clones [16], and assessed from a
qualitative perspective [28].

8.3 Clone detection studies for other languages

Table 7 summarizes a list of studies conducted on clone
detection for programming languages other than those for
smart contracts. The studies approach clone detection with
a fixed granularity at function/method level, and therefore,
the reported figures are comparable to those of our work.

Table 7: Studies on cloning in conventional software.

Author LOC Lang. Tools Clone%

Tuzun et al. [50] 97K Java CCFinder 33%
Tsantalis et al. [9] 51K-209K Java Deckard, NiCad 14.3-81.9%
Lague et al. [2] 15M C Datrix 6.4%-7.5%
Baxter et al. [35] 400K C custom 12.7%-28%
Hasanain et al. [3] 286K C NiCad 49%
van Bladel et al. [11] 3.7K-32.4K Java NiCad, IClones 23-39%

Our study 2.7M Solidity NiCad 30.13%

Tuzun and Er. [50] conducted an empirical analysis of
an industrial system consisting of 677 Java files and 97
KLOC. They observed a clone rate of 22% and found that
more than half of the files (360 files) have at least one
clone. Similarly, Tsantalis et al. [9] conducted a large-scale
empirical study using nine open-source projects analyzed
by four different clone detection tools (CCFinder, Deckard,
CloneDR, and NiCad). They found that the clone rate in
test code was between 14.3% and 81.9%, while the clone
rate in application code was between 18.1% and 85.7%. In
addition, they reported that Type-1 clones can be refactored
more easily than other types of clones. This observation
aligns well with our finding that about 90% of all clones in
Solidity smart contracts are of Type-1, and suggests that the
majority of cloning-related code quality issues in Solidity
smart contracts can be efficiently refactored.

Laguë et al. [2] conducted a study to reveal the benefits
of using clone detection in industrial software development
processes. They analyzed a large telecommunication system
of 15 MLOC over three years. The results show that the rate
of clones stays at a constant level over time, ranging be-
tween 6.4% and 7.5%. Similarly, Baxter et al. [35] conducted
a clone detection study to identify duplicated code in an
industrial system written in C. The size of the code was 400
KLOC. They observed cloning rates of 12.7% clones overall
and 28% in three specific subsystems. Their results show
that the clone rates may vary for different subsystems.

More recently, Hasanain et al. [3] used NiCad to study
clone detection in a large industrial test suite. They found
49% of the code to be duplicated with Type-3 being the
prevalent clone type. Van Bladel and Demeyer [11] carried
out a similar study on test code in open source projects. They
used four different clone detection tools i.e. Nicad, CPD,
IClones, and TCore. They report a clone density between
23% and 29% with Type-2 clones having a higher represen-
tation. Test suites have not been analyzed in the context of
smart contracts, but could provide further valuable insights.

9 THREATS TO VALIDITY

Construct validity. Our observations may be artifacts of
the NiCad configuration settings that we used, rather than
meaningful observations about cloning tendencies in Solid-
ity smart contracts. To combat this, we use well-established
settings [3], [11], [28] in our experiments, e.g., normalization,
setting the granularity threshold to 10 LOC, and using a 0.3
dissimilarity threshold for Type-3 clones.

Internal validity. The manual classification of cloned
functions and contracts (see Tables 2 and 4) can result
in incorrectly classified data. Furthermore, because of the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 12

broader definition of the categories, there is always room
for interpretation when conducting the classification. To
address this potential threat, we made the list of categorized
functions available to public scrutiny.10

External validity. Our study has sampled only veri-
fied smart contracts deployed on the Ethereum platform,
a subset of all smart contracts deployed on the platform.
Thus, there are no guarantees on the safe generalization
of our findings to all smart contracts written in Solidity.
The same reasoning applies to generalizing our findings
to other blockchain platforms. However, the goal of these
experiments was not to provide a general theory for all
Ethereum smart contracts, but to extract initial and high-
level insights from existing smart contracts in order to raise
awareness about the highly vulnerable state of systems re-
lying on immutable code. We are still reasonably confident,
that many of our insights translate well to other platforms
relying on immutable source code. An external threat to
validity w.r.t. the original study we could not mitigate is
the number of transactions used in the analysis of RQ2, as
explained in Section 6.2.2.

Limitations. Due to the limited parsing support for Solid-
ity (especially compared to that for mainstream languages,
such as Java and C++), we have developed a custom parser
using the TXL grammar [30]. Since this is the first version
of the parser, bugs and other shortcomings are possible.
Although we have not experienced such issues during our
experiments, we have made the parser available to public
scrutiny10. Nevertheless, as a sign of maturity, the Solidity
parsers and normalizers developed for our experiments
have become part of NiCad starting with its v6.2 release.

10 CONCLUSION

In this paper, we reported the results of our study on
source code cloning practices on the Ethereum blockchain
platform. By analyzing 33,073 Solidity smart contracts, we
found that 30.13% of the source code is cloned. Our work
is an extended conceptual replication of the study of Kondo
et al. [13] who reported a substantially higher clone ratio
of 79.2%. The main difference between the two studies is
the level of granularity clones are analyzed at. Our analysis
was carried out at the level of functions, while the original
analysis was carried out at the level of whole source files.
To achieve this finer granularity of cloning analysis, we
extended the NiCad clone detection tool to support Solid-
ity, the programming language of the Ethereum platform.
Our study reports a lower boundary of the clones on the
Blockchain platform. This lower boundary is still on par
with the 6–50% rate of cloning reported from traditional
software engineering domains [2], [3], suggesting potential
risks of reduced security, reliability, and performance of the
overall software system.

An important takeaway of our study is that these prob-
lems could be effectively addressed by refactoring. The
majority, about 90% of clones are of Type-1, i.e., exact
replicas, and such clones have been shown to be easier to
refactor [9]. Moreover, as shown by our cluster analysis,
cloned functions tend to form hotspots in the source code:
half of the clones can be found in just about 2% of clusters.
Such clusters should be the prime candidates for refactoring.

Unfortunately, the lack of coordination between develop-
ers renders such efforts particularly challenging. Thus, we
anticipate automated audit mechanisms to appear in the
integration (pre-deployment) phase of blockchain DevOps
processes [51]. Solutions such as the NiCad-based tool pre-
sented in this paper could serve as a machinery to generate
refactoring recommendations to reduce the clone ratio in the
code to be deployed, thereby improving the overall code
quality of the platform. Furthermore, we foresee the emer-
gence of quality control as a service, provided by platform
agents in exchange for compensation that is proportional to
their computation investment.

Future work should focus on extending the scope of
the current study to smart contract programming languages
of other platforms, such as Script, the language of Bitcoin.
Opportunities in adapting traditional software engineering
lifecycle models to the particularities of smart contract de-
velopment should be considered as well.

REFERENCES

[1] M. Bartoletti and L. Pompianu, “An empirical analysis of smart
contracts: platforms, applications, and design patterns,” in Inter-
national conf. on financial cryptography and data security. Springer,
2017, pp. 494–509.

[2] B. Laguë et al., “Assessing the Benefits of Incorporating Function
Clone Detection in a Development Process,” in International Con-
ference on Software Maintenance. IEEE, 1997, pp. 314–321.

[3] W. Hasanain et al., “An analysis of complex industrial test code us-
ing clone analysis,” in International Conference on Software Quality,
Reliability and Security. IEEE, 2018, pp. 482–489.

[4] C. J. Kapser and M. W. Godfrey, ““Cloning considered harmful”
considered harmful: patterns of cloning in software,” Empirical
Software Engineering, vol. 13, no. 6, pp. 645–692, 2008.

[5] C. K. Roy et al., “The vision of software clone management:
Past, present, and future,” in 2014 Software Evolution Week - IEEE
Conference on Software Maintenance, Reengineering, and Reverse En-
gineering. IEEE, 2014, pp. 18–33.

[6] R. Koschke, “Frontiers of software clone management,” in 2008
Frontiers of Software Maintenance. IEEE, 2008, pp. 119–128.

[7] D. Chatterji et al., “Effects of cloned code on software maintain-
ability: A replicated developer study,” in Working Conference on
Reverse Engineering. IEEE, 2013, pp. 112–121.

[8] E. Jürgens, F. Deissenboeck, and B. Hummel, “Code similarities
beyond copy & paste,” in European Conference on Software Mainte-
nance and Reengineering. IEEE, 2010, pp. 78–87.

[9] N. Tsantalis, D. Mazinanian, and G. P. Krishnan, “Assessing
the refactorability of software clones,” IEEE Trans. Software Eng.,
vol. 41, no. 11, pp. 1055–1090, 2015.

[10] C. Roy and J. Cordy, “A survey on software clone detection
research,” Ontario, Canada, Tech. Rep. 2007-541, 2007.

[11] B. van Bladel and S. Demeyer, “Clone Detection in Test Code:
An Empirical Evaluation,” in International Conference on Software
Analysis, Evolution and Reengineering. IEEE, 2020, pp. 492–500.

[12] C. Dannen, Introducing Ethereum and solidity. Springer, 2017.
[13] M. Kondo et al., “Code cloning in smart contracts: a case study

on verified contracts from the Ethereum blockchain platform,”
Empirical Software Engineering, vol. 25, no. 6, pp. 4617–4675, 2020.

[14] C. K. Roy and J. R. Cordy, “NICAD: accurate detection of near-
miss intentional clones using flexible pretty-printing and code
normalization,” in Int. Conf. on Program Comprehension. IEEE,
2008, pp. 172–181.

[15] L. Jiang et al., “DECKARD: scalable and accurate tree-based
detection of code clones,” in International Conference on Software
Engineering. IEEE, 2007, pp. 96–105.

[16] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evalu-
ation of code clone detection techniques and tools: A qualitative
approach,” Sci. Comput. Program., vol. 74, no. 7, pp. 470–495, 2009.

[17] R. K. Saha et al., “Understanding the evolution of type-3 clones: an
exploratory study,” in Proceedings of the 10th Working Conference on
Mining Software Repositories. IEEE, 2013, pp. 139–148.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 13

[18] W. O. A. Hasanain, “Analysis and maintainability of complex
industry test code using clone detection,” Ph.D. dissertation, Car-
leton University, 2020.

[19] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue, “Gemini: Main-
tenance Support Environment Based on Code Clone Analysis,” in
International Software Metrics Symposium. IEEE, 2002, pp. 67–76.

[20] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Com-
parison and Evaluation of Clone Detection Tools,” IEEE Trans.
Softw. Eng., vol. 33, no. 9, p. 577–591, 2007.

[21] A. Kumar et al., “A systematic review of semantic clone detection
techniques in software systems,” IOP Conference Series: Materials
Science and Engineering, vol. 1022, p. 11, 2021.

[22] M. Swan, Blockchain: Blueprint for a new economy. O’Reilly, 2015.
[23] J. C. Carver, “Towards reporting guidelines for experimental repli-

cations: A proposal,” in 1st International Workshop on Replication in
Empirical Software Engineering Research, vol. 1, 2010, pp. 1–4.

[24] A. R. Dennis and J. S. Valacich, “A replication manifesto,” AIS
Transactions on Replication Research, vol. 1, no. 1, p. 1, 2015.

[25] Z. Gao et al., “SmartEmbed: A Tool for Clone and Bug Detection
in Smart Contracts through Structural Code Embedding,” in Int.
Conference on Software Maintenance and Evolution. IEEE, 2019, pp.
394–397.

[26] H. Liu et al., “Enabling clone detection for ethereum via smart con-
tract birthmarks,” in Proceedings of the 27th International Conference
on Program Comprehension. IEEE / ACM, 2019, pp. 105–115.

[27] M. I. Mehar et al., “Understanding a Revolutionary and Flawed
Grand Experiment in Blockchain: The DAO Attack,” J. Cases Inf.
Technol., vol. 21, no. 1, pp. 19–32, 2019.

[28] C. K. Roy and J. R. Cordy, “Towards a mutation-based automatic
framework for evaluating code clone detection tools,” in Canadian
Conf. on Comp. Science & Software Eng., ser. ACM International
Conference Proceeding Series, vol. 290. ACM, 2008, pp. 137–140.

[29] T. Wang et al., “Searching for better configurations: a rigorous
approach to clone evaluation,” in European Software Engineering
Conference. ACM, 2013, pp. 455–465.

[30] J. R. Cordy, C. D. Halpern-Hamu, and E. Promislow, “TXL: A rapid
prototyping system for programming language dialects,” Comput.
Lang., vol. 16, no. 1, pp. 97–107, 1991.

[31] M. Beller, A. Zaidman, and A. N. Karpov, “The last line effect,” in
Proceedings of the 2015 IEEE 23rd International Conference on Program
Comprehension. IEEE, 2015, pp. 240–243.

[32] R. van Tonder and C. L. Goues, “Defending against the attack of
the micro-clones,” in 24th IEEE International Conference on Program
Comprehension. IEEE, 2016, pp. 1–4.

[33] M. Mondal, C. K. Roy, and K. A. Schneider, “Micro-clones in
evolving software,” in 25th International Conference on Software
Analysis, Evolution and Reengineering. IEEE, 2018, pp. 50–60.

[34] D. S. Cruzes and T. Dybå, “Research synthesis in software en-
gineering: A tertiary study,” Information and Software Technology,
vol. 53, no. 5, pp. 440–455, 2011.

[35] I. D. Baxter et al., “Clone detection using abstract syntax trees,” in
Int. Conference on Software Maintenance. IEEE, 1998, pp. 368–377.

[36] S. Palladino, “The parity wallet hack explained,” OpenZeppelin,
2017.

[37] R. Dorfman, “A formula for the gini coefficient,” The review of
economics and statistics, pp. 146–149, 1979.

[38] C. E. Shannon, “A mathematical theory of communication,” The
Bell system technical journal, vol. 27, no. 3, pp. 379–423, 1948.

[39] R. M. Parizi, Amritraj, and A. Dehghantanha, “Smart contract
programming languages on blockchains: An empirical evaluation
of usability and security,” in Blockchain - ICBC 2018 - First Inter-
national Conference, ser. Lecture Notes in Computer Science, vol.
10974. Springer, 2018, pp. 75–91.

[40] G. Van Rossum, B. Warsaw, and N. Coghlan, “Pep 8: style guide
for python code,” Python. org, vol. 1565, 2001.

[41] T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz, “Empirical review
of automated analysis tools on 47,587 Ethereum smart contracts,”
in Int. Conference on Software Engineering. ACM, 2020, pp. 530–541.

[42] A. Ghaleb et al., “How effective are smart contract analysis tools?
Evaluating smart contract static analysis tools using bug injec-
tion,” in Int. Symp. on Software Testing and Analysis. ACM, 2020,
pp. 415–427.

[43] X. Li et al., “A survey on the security of blockchain systems,”
Future Gener. Comput. Syst., vol. 107, pp. 841–853, 2020.

[44] S. Rouhani and R. Deters, “Security, performance, and applications
of smart contracts: A systematic survey,” IEEE Access, vol. 7, p. 20,
2019.

[45] M. Scherer, “Performance and scalability of blockchain networks
and smart contracts,” Master’s thesis, Umea Uni., Sweden, 2017.

[46] R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia, “A
survey on blockchain interoperability: Past, present, and future
trends,” ACM Comput. Surv., vol. 54, no. 8, pp. 168:1–168:41, 2022.

[47] P. Treleaven, R. G. Brown, and D. Yang, “Blockchain technology in
finance,” Computer, vol. 50, no. 9, pp. 14–17, 2017.

[48] C. Alexopoulos et al., “Benefits and Obstacles of Blockchain Ap-
plications in e-Government,” in Hawaii International Conference on
System Sciences. ScholarSpace, 2019, pp. 1–10.

[49] C. C. Agbo et al., “Blockchain technology in healthcare: A system-
atic review,” Healthcare, no. 2, 2019.

[50] E. Tüzün and E. Er, “A case study on applying clone technology
to an industrial application framework,” 2012 6th International
Workshop on Software Clones, IWSC 2012 - Proceedings, 06 2012.

[51] M. Wöhrer and U. Zdun, “Devops for ethereum blockchain smart
contracts,” in 2021 IEEE Intl. Conference on Blockchain, Blockchain
2021, Melbourne, Australia, 2021. IEEE, 2021, pp. 244–251.

Faizan Khan is a software engineer at Plotly
working on data-visualization libraries. He com-
pleted his Masters at the Department of the
Electrical and Computer Engineering at McGill
University. His research interests include pro-
gramming languages and program synthesis.

Istvan David is a postdoctoral researcher at the
University of Montreal, Canada. He received his
PhD in Computer Science from the University of
Antwerp, Belgium. His research interests include
model-driven engineering of complex heteroge-
neous systems, and software quality improve-
ment through automation. He is active outside
of academia as well, especially in innovation
consulting. Contact: https://istvandavid.com.

Daniel Varro is a full professor at McGill Univer-
sity. He serves on the editorial board of Software
and Systems Modeling and Journal of Object
Technology periodicals, and served as a pro-
gram co-chair of MODELS 2021, SLE 2016,
ICMT 2014, FASE 2013 conferences. He is a
co-founder of the VIATRA open source soft-
ware framework as well as IncQuery Labs, a
technology-intensive company.

Shane Mcintosh is an associate professor at
the University of Waterloo. Previously, he was
an assistant professor at McGill University. He
received his Ph.D. from Queen’s University. In
his research, Shane uses empirical methods to
study software build systems, release engineer-
ing, and software quality: http://shanemcintosh.
org/.

https://istvandavid.com
http://shanemcintosh.org/
http://shanemcintosh.org/

	Introduction
	Background
	Summary of the original study
	Research questions and major findings
	Approach

	Study design
	Type of replication
	Motivation for replication
	Level of interaction with the original researchers
	Changes to the original study

	Experimental setup
	Tool configuration and clone detection
	Tool selection and configuration
	Grammar development
	Clone detection
	OpenZeppelin code analysis

	Metadata extraction and preprocessing
	Duplicate removal
	Metadata extraction
	Data preprocessing

	Analysis and reporting
	Analysis
	Comparison
	Reporting

	Empirical study on code cloning
	RQ1: How frequently are verified contracts cloned?
	Approach
	Findings
	Discussion

	RQ2: What are the characteristics of clusters of similar verified contracts?
	Approach
	Findings
	Discussion

	RQ3: How frequently are code blocks of verified contracts identical to those from OpenZeppelin?
	Approach
	Findings
	Discussion

	Comparison with the original study
	RQ1
	RQ2
	RQ3

	Related work
	Empirical studies on smart contracts
	Clone detection in Solidity smart contracts
	Clone detection studies for other languages

	Threats to validity
	Conclusion
	References
	Biographies
	Faizan Khan
	Istvan David
	Daniel Varro
	Shane Mcintosh

