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Abstract—The impact of software vulnerabilities on everyday software systems is concerning. Although deep learning-based models
have been proposed for vulnerability detection, their reliability remains a significant concern. While prior evaluation of such models
reports impressive recall/F1 scores of up to 99%, we find that these models underperform in practical scenarios, particularly when
evaluated on the entire codebases rather than only the fixing commit. In this paper, we introduce a comprehensive dataset (Real-Vul)
designed to accurately represent real-world scenarios for evaluating vulnerability detection models. We evaluate DeepWukong,
LineVul, ReVeal, and IVDetect vulnerability detection approaches and observe a surprisingly significant drop in performance, with
precision declining by up to 95 percentage points and F1 scores dropping by up to 91 percentage points. A closer inspection reveals a
substantial overlap in the embeddings generated by the models for vulnerable and uncertain samples (non-vulnerable or vulnerability
not reported yet), which likely explains why we observe such a large increase in the quantity and rate of false positives. Additionally, we
observe fluctuations in model performance based on vulnerability characteristics (e.g., vulnerability types and severity). For example,
the studied models achieve 26 percentage points better F1 scores when vulnerabilities are related to information leaks or code
injection rather than when vulnerabilities are related to path resolution or predictable return values. Our results highlight the substantial
performance gap that still needs to be bridged before deep learning-based vulnerability detection is ready for deployment in practical
settings. We dive deeper into why models underperform in realistic settings and our investigation revealed overfitting as a key issue.
We address this by introducing an augmentation technique, potentially improving performance by up to 30%. We contribute (a) an
approach to creating a dataset that future research can use to improve the practicality of model evaluation; (b) Real-Vul– a
comprehensive dataset that adheres to this approach; and (c) empirical evidence that the deep learning-based models struggle to
perform in a real-world setting.
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1 INTRODUCTION

Software vulnerabilities have a large negative impact on
the software systems. Identifying and addressing vulner-
abilities in complex systems with multiple interconnected
components has only exacerbated the problem, making a
comprehensive and systematic approach necessary. Machine
learning models that are trained using Deep Neural Net-
works (DNNs) have shown promise in identifying software
vulnerabilities [1, 2].

However, the reliability of these models in detecting
vulnerabilities in real-world scenarios depends on the evalu-
ation methodology and dataset. Biases that can affect model
performance can arise from various sources, such as the
manner in which the dataset is generated and labeled.
The generalizability of a model may suffer if the dataset
on which it is trained is biased. For instance, synthetic
datasets, such as SARD [3], are artificially created using fuzz
techniques and evolutionary algorithms and are extensively
used to evaluate the effectiveness of deep learning models
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in detecting software vulnerabilities [4, 5, 6]. It is unclear the
extent to which the vulnerabilities in these synthetic datasets
capture the full range of complexities and variations that are
found in real-world vulnerabilities.

Moreover, these studies classified explicitly identified
vulnerable functions as “vulnerable” and all remaining
functions as “non-vulnerable”. However, this binary classi-
fication overlooks the possibility that some functions might
be vulnerable yet undetected. Therefore, for the purposes
of our study, we will describe these functions with a more
nuanced term, “uncertain,” to acknowledge the inherent
ambiguity in their vulnerability status.

On the other hand, there do exist real-world datasets
that contain vulnerabilities from real software systems (e.g.,
Big-Vul [7], ReVeal [1]); however, these datasets tend to (i)
only include a sample of code from a substantially larger
codebase, i.e., the vulnerable and uncertain (non-vulnerable
or vulnerability not reported yet) samples are extracted from
vulnerability-related commits, and hence, the dataset does
not reflect a realistic setting where vulnerability detection
models are deployed to scan an entire project; and (ii)
suffer from label inconsistency wherein the same sample
is marked as both vulnerable and uncertain (see Section 3
for detailed explanation). Consequently, we conjecture that
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models that are trained and evaluated using such datasets
may not perform well when applied in real-world settings.

Therefore, in this paper, we introduce Real-Vul, a new
vulnerability detection dataset designed to accurately rep-
resent the realistic settings in which these models would
be deployed. By “realistic settings,” we refer to evaluation
environments that closely mirror real-world conditions, in-
cluding the distribution of vulnerable and uncertain sam-
ples. This approach ensures that the models are tested under
conditions that reflect their actual usage scenarios.

Real-Vul differs from prior existing datasets in that it
includes entire codebases in which vulnerable code exists,
representing a more realistic setting in which vulnerability
detection models would be applied. Real-Vul also accounts
for the label inconsistency problem by comparing the hash
of vulnerable and uncertain code segments.

To re-evaluate the performance of deep learning-based
models in our more realistic setting, we apply four state-of-
the-art models (i.e., DeepWukong [4], LineVul [8], ReVeal [1],
and IVDetect [9]) to Real-Vul dataset. First, we train and
evaluate these models on their original datasets, i.e., the
SARD [3], Big-Vul [7], ReVeal [7], and IVDetect [9] datasets,
respectively. The DeepWukong and LineVul models achieve
notably high precision (87% - 96%) and F1 scores (90% -
93%), while ReVeal and IVDetect achieves precision and F1
scores of 29% - 39% and 78% - 83%, respectively. However,
when we evaluate these models on the Real-Vul dataset, we
observe a substantial decrease in performance, e.g., preci-
sion and F1 score decreases of up to 95 and 91 percentage
points, respectively.

To understand why these models produce a large num-
ber of false positives, we visualize their embeddings for
vulnerable and uncertain samples in a two-dimensional
space using t-SNE [10]. We find that these models struggle
to establish a clear distinction between the two classes,
resulting in inaccurate identification of vulnerabilities. For
instance, models like LineVul heavily rely on lexical rela-
tionships between tokens and as such, encounter difficulties
in accurately capturing the complex nature of vulnerabilities
in real-world software.

To pinpoint why models underperform in realistic
settings, we conducted an in-depth manual analysis of
false positives. We found that overfitting, where models
predict based on specific tokens, was a significant issue.
To counteract this, we implemented an augmentation
technique that has the potential to enhance performance
by up to 30%. Furthermore, to understand the capability
of the studied models in identifying different types
of vulnerabilities, we stratify our model evaluation by
vulnerability type. Our findings indicate that the models
achieve 26 percentage points higher F1 scores in detecting
vulnerability from specific types, such as information leaks
and code injection, and struggle to detect vulnerabilities
from other types, like path resolution and predictable
return values. Additionally, we find that the models
perform poorly in identifying high-severity vulnerabilities,
showing further challenges for these models in identifying
important vulnerabilities.

Contributions. This paper makes the following contribu-
tions:

• We introduce Real-Vul, a new vulnerability detection
dataset that aims to address the practical limitations of
prior datasets.

• We re-evaluate the performance of existing state-of-the-
art vulnerability detection approaches on the Real-Vul
dataset. Our evaluation provides a more accurate repre-
sentation of the performance of these models when used
in realistic settings.

• We characterize the limitations of the studied approaches
in terms of:
⋆ their embeddings, which show distinct overlaps across

vulnerable and uncertain samples, suggesting models’
inability to clearly distinguish vulnerable codes from
uncertain codes.

⋆ tendencies to be unable to detect vulnerabilities belong-
ing to particular types and severities. Stratifying model
performance by vulnerability type and severity allows
targeted improvements and efficient resource allocation
in addressing distinct security risks.

Fostering open science: To foster future advances to mod-
eling approaches for vulnerability detection, we release our
Real-Vul dataset, and we also make the scripts used for our
experiments publicly available.1

2 LIMITATIONS OF EXISTING DATASETS

As software systems become more complex and larger, the
potential for security vulnerabilities also increases. There-
fore, it is crucial to have tools to discover these vulnerabil-
ities. Machine learning models have proven to be effective
in understanding code and detecting vulnerabilities. How-
ever, obtaining and evaluating large datasets in a realistic
setting [1, 7, 11] remains challenging. Existing studies on
vulnerability detection [7, 11] rely on datasets that are based
on various criteria and may not reflect reality accurately.
These datasets can be classified into three categories: syn-
thetic, oracle-based, and real-world datasets. In this section,
we describe each category and their limitations.
Synthetic dataset (e.g., SARD [3]). The Software Assurance
Reference Dataset (SARD) is an example of a synthetic
dataset. It contains a vast number of artificially produced
C/C++ programs containing numerous security vulnerabil-
ities. SARD has been created through automated methods
like fuzzing or genetic algorithms. The SARD dataset’s
limitation lies in containing only artificially generated vul-
nerabilities, which may not accurately represent real-world
software vulnerabilities. This dataset does not reflect the
complexities and variations found in actual code written by
developers, potentially limiting researchers from evaluating
their models in a realistic setting.
Oracle-based dataset (e.g., D2A [12]). D2A is an exam-
ple of an Oracle-based dataset. Unlike synthetic datasets,
oracle-based datasets rely on third-party sources such as
static analysis tools to provide labels for collected data
samples. Although such datasets offer more complexity than
synthetic datasets, they may not fully represent real-world
vulnerabilities due to oversimplification. The inaccuracy of
the labeling heavily affects the dataset’s reliability which
threatens the usability of the vulnerability detection models

1. https://zenodo.org/record/8206635
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trained using this type of dataset.
Real-world dataset (e.g., Big-Vul [7], Devign [11], Re-
Veal [1]). Big-Vul and ReVeal datasets are examples of real-
world datasets for vulnerability detection. They are more
diverse than synthetic and oracle-based datasets; real-world
datasets are generated using data available in issue-tracking
systems and source code repositories.

Big-Vul dataset [7] is composed of C/C++ functions
collected from 348 open-source GitHub projects spanning
from 2002 to 2019. The Devign dataset has been cu-
rated from Linux Kernel, QEMU, Wireshark, and FFmpeg
projects, whereas the ReVeal dataset [1] is collected from
the Chromium and Debian project. The above-mentioned
datasets still have limitations. First, such datasets fail to
entirely capture vulnerability detection in a realistic setting
where a comprehensive scan of the entire source code
of a project would be performed. In realistic setting, the
vulnerable functions are rare compared to uncertain ones,
leading to an imbalance in their occurrence during scans.
Conversely, prior datasets typically categorize altered or
post-fix functions as uncertain and unchanged or pre-fix
functions as vulnerable, resulting in an unrealistic nearly
equal ratio of uncertain to vulnerable functions. Moreover,
since vulnerable functions are rare in the real world, these
datasets tend to be smaller and less diverse. Training on
such a limited dataset will result in a biased model. Addi-
tionally, since the test dataset will also be biased, it will be
challenging to detect these biases in the model.

Second, these datasets may suffer from label inconsistency.
Figure 1 elaborates further on the problem of label inconsis-
tency. In the figure, consider two vulnerability-fixing com-
mits, X1 and X2, with X1 occurring before X2. In X1, the
vulnerable function is Function B (note that after fixing it,
it became Function B'). Following the data collection policy
of previous studies (e.g., ReVeal [1]), Function B would be
labeled as vulnerable, while the other unchanged functions
(Function A and C) would be labeled as uncertain. However,
as we progress further in the timeline, we encounter commit
X2, which fixes the vulnerability in ”Function A”. Now,
as per the aforementioned policy, ”Function A” would be
labeled as vulnerable, while Function B'and C would be
labeled as uncertain. Consequently, the dataset will contain
two entries for Function A, where in one case, it is marked
as vulnerable and in the other as uncertain. This discrepancy
in labeling creates the label inconsistency issue. In fact,
we verified the presence of label inconsistency in existing
datasets and found that 15% vulnerable samples in the
ReVeal dataset have been listed as uncertain samples.

Due to the aforementioned limitations, current deep
learning models for vulnerability detection (e.g., [1, 4, 8, 11,
13]) could result in unrealistic evaluations compared to real-
world usage. Additionally, the reported model performance
might be either exaggerated or understated. Therefore, in
this study, we build Real-Vul, a new dataset that takes into
consideration (1) a realistic setting where a comprehensive
scan of the entire source code of a project would be per-
formed; and (2) label consistency. The next section presents
Real-Vul and the process we follow to create it.

Function A

Function B

Function C

Function A

Function B'

Function C

Function A 0

Function B 1

Function C 0

Function A 1

Function B' 0

Function C 0

Timeline

Commit X1 Commit X2

Dataset

Fig. 1: Example of label inconsistency.

3 Real-Vul DATASET

In this section, we introduce our proposed dataset, named
Real-Vul, which addresses the limitations of existing vulner-
ability detection datasets (Section 2). Table 1 provides an
overview of the projects that are incorporated in Real-Vul.

Project selection. Real-Vul includes separate training
and testing datasets designed for training and evaluat-
ing vulnerability detection models. To ensure high-quality
vulnerable samples, we carefully select projects from the
Big-Vul dataset [7] based on the number of vulnerabilities
in each project. Big-Vul dataset comprises real-world vul-
nerable C/C++ functions. It also provides rich metadata
for vulnerabilities, including line numbers, vulnerability-
fixing commit hashes, CVE IDs, severity rankings, and
summaries from public Common Vulnerabilities and Expo-
sures (CVE) databases and related source code repositories.
Consequently, all samples within the Real-Vul dataset are
real and written in C/C++ as well. Our focus on projects
with a higher number of vulnerabilities signifies the sub-
stantial effort invested in identifying vulnerabilities in these
projects [14]. Our selection consists of the top 10 projects
with the most vulnerabilities, creating a dataset that is at
least two times larger than those used in previous stud-
ies [1, 11]. Remarkably, these ten projects encompass 73%
of the vulnerable samples from the entire Big-Vul dataset,
making Real-Vul a representative subset without its limita-
tions.
Creation of vulnerable samples. To align with real-world
scenarios, we adopt a time-based strategy for sample cre-
ation in the training and testing datasets. This approach
simulates the process of training models on historical data
and then identifying vulnerabilities over time. The time-
based strategy is described below:

For generating vulnerable samples, we start extracting
the dates on which the vulnerable functions were fixed
using the vulnerability-fixing commit hashes available in the
Big-Vul dataset.

To organize vulnerable samples, we order the functions
based on their vulnerability-fixing dates (i.e., the dates of
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TABLE 1: Projects included in Real-Vul dataset.

Project Description Project Size (#
of Functions)

# Vulnerable
Functions

# Uncertain Func-
tions

Chromium Open source browser 153,057 3,137 149,920

FFmpeg Video and audio processing 7,071 85 6,986

ImageMagic Image manipulation tool 1,401 201 1,200

Jasper Image encoding tool 315 86 229

Krb5 Computer network authentication protocol 3,151 106 3,045

Linux Operating system 91,392 1,477 89,915

Openssl Encryption tool suit 2,568 110 2,458

Php-src Interpreter for php-scripting language 3,613 104 3,509

Qemu System emulator 7,739 82 7,657

Tcpdump Computer network analyzing tool 612 140 472

vulnerability-fixing commits). We then allocate the first 80%
of the ordered vulnerable functions to the training dataset,
while the remaining 20% form the test dataset. For example,
in the case of the FFmpeg project, the training dataset
includes samples fixed between August 3, 2013, and May
30, 2018. The testing set comprises samples fixed between
June 28, 2018, and August 5, 2019. Note that these dates
are the vulnerability-fixing commit dates in the FFmpeg
project. The dates for all of the projects are available in
the online Appendix. In total, our dataset consists of 5,528
vulnerable functions, with 4,418 functions assigned to the
training dataset and 1,110 to the test dataset.
Creation of uncertain samples. To create uncertain samples,
we clone the remote repository of each selected project and
check out two snapshots, one for the training dataset and
one for the testing dataset, using the most recent snapshots
for each. For instance, in the FFmpeg project example, we
clone the FFmpeg repository on May 31, 2018, to generate
uncertain samples for the training dataset. This ensures that
the uncertain samples are from a version later than the last
vulnerability-fixing date in the training dataset (May 30,
2018). For the test dataset, we take the second snapshot on
August 6, 2019. It is essential to maintain the constraint of
chronological dates for training and testing snapshots. That
said, other snapshots of the project could be taken as long
as this constraint is upheld.

To obtain uncertain functions, we extract all functions
from the source code files collected during snapshot cloning.
We calculate the hash of these collected functions and the
previously gathered vulnerable functions. Functions whose
MD5 hashes do not match any of the MD5 hashes of the
vulnerable functions are labeled as uncertain, ensuring label
consistency in the Real-Vul dataset.

Upon completion, we have a total of 1,682,713 uncertain
functions, with 769,464 allocated to the training dataset and
913,249 to the test dataset. The higher number of uncertain
functions in the test dataset is due to their extraction from
a later project version compared to the one used for the
training dataset.

4 STUDY DESIGN

In this section, we present the models we evaluate using
Real-Vul dataset (Section 4.1). Then, we describe the research

questions driving our investigation (Section 4.3), and the
evaluation metrics (Section 4.2).

4.1 Employed Models

We choose four state-of-the-art deep learning-based mod-
els, namely LineVul [8], DeepWukong [4], ReVeal [1], and
IVDetect [9] to conduct our experiments. Next, we briefly
describe the architectural details of these models.
LineVul. LineVul [8] is a deep learning-based model built
using CodeBERT [15]. We opt to include LineVul in our
analysis as it is the state-of-the-art deep learning-based
vulnerability detection model that utilizes a sequence-based
approach for vulnerability detection. LineVul takes in a
chunk as input and classifies it as a vulnerable or uncertain
chunk utilizing the CodeBERT model. A chunk is a sequence
of code tokens generated from source code programs. The
LineVul has been trained on the Big-Vul dataset which has
been curated using vulnerability-fixing commits from open-
source projects.
DeepWukong. DeepWukong [4] is a leading vulnerabil-
ity detection model utilizing a Graph Neural Network
(GNN) [16] for in-depth code analysis. It converts code into
Program Dependence Graphs (PDGs), then into XFGs (sub-
graphs), highlighting the data and control flow dependen-
cies within. DeepWukong evaluates these XFGs to identify
vulnerable code segments, employing the SARD dataset for
training. This model has been included in the study due
to its advanced graph-based approach, which sets a new
benchmark for accurately detecting code vulnerabilities.
ReVeal. ReVeal [1] is a model that finds vulnerable code
using graph neural networks. It has been chosen because it
gathers data similarly to Real-Vul, focusing on unchanged
functions from specific commits as non-vulnerable exam-
ples. ReVeal combines control flow, data flow, syntax trees,
and dependency graphs into a Code Property Graph (CPG)
for comprehensive code analysis. It trains on a dataset cu-
rated from the Linux Debian Kernel and Chromium project.
IVDetect. IVDetect [9] is a tool that aims to provide precise
interpretations of detected vulnerabilities. IVDetect incor-
porates representation learning and a graph-based interpre-
tation model. It processes code by analyzing control flow,
data flow, abstract syntax trees, and program dependency
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graphs, creating a unified structure for efficient vulnera-
bility detection. IVDetect uses datasets created by prior
studies [1, 7] comprising projects such as FFmpeg, Qemu,
and Chromium.

4.2 Evaluation Metrics.
The evaluation metric must accurately measure the models’
performance on the task at hand. In this study, we use
accuracy, precision, recall, F1, and AUC to measure the
models’ performance.

Accuracy quantifies the overall correctness of a vulner-
ability detection model, representing the proportion of true
results (both true positives and true negatives) among the
total number of samples that were evaluated. For example,
if a model correctly identifies 80 out of 100 functions (vul-
nerable or not), its accuracy is 80%. High accuracy indicates
effective identification of both vulnerable and uncertain
samples with minimal errors.

Precision represents the fraction of vulnerabilities de-
tected by the model that are truly vulnerabilities. For ex-
ample, in the case of the DeepWukong model, it measures
how many XFGs predicted as vulnerable are genuinely
vulnerable XFGs. A low precision score indicates that the
model is incorrectly classifying many uncertain samples as
vulnerable, leading to a high number of false positives.
Conversely, a high precision score implies that when the
model detects a vulnerability, it is likely a real vulnerability.

Recall, on the other hand, denotes the fraction of actual
vulnerabilities in the system that the model successfully
detects. For the DeepWukong model, it measures how many
true vulnerable XFGs are correctly identified as vulnerable
by the model. A high recall score indicates that the model
can detect most vulnerabilities correctly, resulting in a low
number of false negatives.

The F1 score combines precision and recall, providing an
overall assessment of how well these two measurements are
balanced. By considering both precision and recall, the F1-
score offers a more complete understanding of the model’s
effectiveness in vulnerability detection.

Area Under the Curve (AUC) evaluates a model’s ca-
pability to distinguish between classes, like differentiating
vulnerable from uncertain XFGs in the DeepWukong model.
A high AUC score indicates that the model is proficient in
accurately distinguishing between vulnerable and uncertain
XFGs. Notably, in a balanced dataset, a random model
would achieve an AUC of 0.50.

4.3 Research Questions
We introduce two research questions (RQs) and explain the
motivation behind each one.
RQ1: How do the DeepWukong, LineVul, ReVeal, and IVDetect
models perform in a realistic evaluation setting compared to the
evaluation setting used in the original studies?
DeepWukong, LineVul, ReVeal, and IVDetect are four state-
of-the-art vulnerability detection models that have demon-
strated promising results in identifying security vulnerabili-
ties. However, we contend that the datasets used to evaluate
these models do not accurately represent real-world usage,
where the models would scan entire project source code
files (see Section 2 for a comprehensive overview of dataset

limitations). For instance, the DeepWukong model heavily
relies on the SARD dataset for evaluation, which contains
artificially generated samples lacking the complexities of
real-world vulnerabilities. Similarly, the LineVul model used
the Big-Vul dataset [7], which suffers from a scarcity of
uncertain samples. Additionally, the ReVeal dataset also suf-
fers from limited uncertain samples and significant “label-
inconsistency.” In this RQ, we evaluate the DeepWukong,
LineVul, ReVeal, and IVDetect models using our Real-Vul
test dataset, which provides a more realistic representation
of vulnerability detection model performance in practical
scenarios.
RQ2: How do the DeepWukong, LineVul, ReVeal, and IVDetect
models perform in a realistic evaluation setting when trained
using a similar realistic training dataset?
In RQ1, we utilize the Real-Vul dataset for model evaluation.
However, we recognize that the training dataset employed
to train these models might not accurately represent the
same distribution as the evaluation dataset (i.e., Real-Vul).
Doing so can lead to poor model performance as the training
and testing datasets are from different distributions. To
achieve optimal results, it is essential for both datasets
to share the same distribution as the data encountered in
practical usage. Consequently, in RQ2, we investigate the
impact of data distribution on model performance by train-
ing and testing the models using our Real-Vul dataset. This
exploration will enable us to ascertain whether employing
a training dataset representative of the same distribution
as the evaluation dataset leads to enhanced model perfor-
mance.

5 PRELIMINARY ANALYSIS

Our study aims to evaluate the performance of the Deep-
Wukong, LineVul, and ReVeal models in a more realis-
tic setting. As a first step towards our goal, we run the
DeepWukong, LineVul, ReVeal, and IVDetect models on the
SARD, the Big-Vul, the ReVeal, and the IVDetect datasets,
respectively, and verify the findings reported in the original
papers. By doing so, we aim to ensure that the results previ-
ously reported are reliable and can be replicated. Addition-
ally, we use the results obtained from these experiments as
our baseline models, which we compare to the performance
of the models in our introduced realistic settings.
Approach. To evaluate the DeepWukong, LineVul, ReVeal,
and IVDetect models on the dataset used in their studies,
we first download the SARD dataset,2 the Big-Vul dataset,3

the ReVeal dataset,4 used in DeepWukong [4], LineVul [8],
ReVeal [1], and IVDetect [9] studies, respectively. We create
the DeepWukong model inputs (XFGs), the LineVul model
inputs (chunks), the ReVeal model inputs (CPG), and the
IVDetect models input PDG using the SARD dataset, the
Big-Vul dataset, the ReVeal dataset, and the IVDetect dataset
samples, respectively. The generated XFG, chunk, CPG, and
PDG datasets are split into training and testing datasets
where 80% of the samples belong to the training dataset and
the remaining 20% samples belong to the testing dataset.

2. https://github.com/jumormt/DeepWukong
3. https://github.com/awsm-research/LineVul
4. https://drive.google.com/drive/folders/1KuIYgFcvWUXheDhT–

cBALsfy1I4utOyReVeal
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TABLE 2: Replication results of DeepWukong, LineVul, Re-
Veal, and IVDetect models.

Model Accuracy
(%)

Precision
(%)

Recall
(%)

F1
(%)

AUC
(%)

DeepWukong 98 87 98 93 88

LineVul 96 96 84 90 85

ReVeal 81 29 59 38 78

IVDetect 85 39 63 24 83

Following the authors’ original experiments, we train the
DeepWukong model for 50 epochs and the LineVul model
for ten epochs. For the ReVeal and IVDetect model, we
follow the original implementation of ReVeal and IVDetect.
The maximum epoch is set to 100 and 50 for ReVeal and
IVDetect, respectively. We stop the training procedure if
the F1-score does not increase for five consecutive epochs.
Finally, We evaluate the models using the testing datasets.

Results. Table 2 shows the replication results of the Deep-
Wukong, LineVul, ReVeal and IVDetect models. From the
figure, we observe that the DeepWukong model achieves
98%, 87%, 98%, 93%, and 88% for accuracy, precision, recall,
F1-score, and AUC, respectively. The accuracy and F1-score
for the DeepWukong model differ by +1 and -2 percentage
points, respectively, from the results reported by the Deep-
Wukong paper.

Our results for the LineVul model follow a similar trend.
The accuracy, precision, recall, F1-score, and AUC for the
LineVul model are 96%, 96%, 84%, 90%, and 85% respec-
tively. Comparing with the results reported in the LineVul
paper, we find that the precision, recall, and F1-score differ
by -1, -2, and -1 percentage points, respectively.

The ReVeal model demonstrates an accuracy of 81%,
with precision, recall, F1-score, and AUC values of 29%,
59%, 38%, and 78%, respectively. Upon comparing these
results with the findings reported in the ReVeal paper, we
note a difference of -6, -3, and -7 percentage points in
precision, recall, and F1-score, respectively.

The IVDetect model demonstrates an accuracy of 85%,
with precision, recall, F1-score, and AUC values of 39%,
63%, 24%, and 83% respectively. Upon comparing these
results with the findings reported in the IVDetect paper,
we note a difference of -2, -2, and -24 percentage points in
precision, recall, and F1-score, respectively.

Overall, we observe that the differences in the metrics are
negligible. The little difference in the metrics can be because
of the presence of different samples in the training/testing
datasets. When a dataset is split into a training set and a
testing set, the samples in the two sets are chosen randomly.
This means that the samples in the training set and the test-
ing set will be different each time we split the dataset. As a
result, model performance on the testing set may vary from
one split to another. The model performance on the testing
set may depend on the specific samples that are included
in the testing set. For example, if the testing set contains
a particularly difficult or easy sample, this can affect the
overall performance. These results serve as baseline models
for comparison with the performance of the models tested

under realistic settings in the RQs.
The effectiveness of these models in vulnerability detec-

tion is influenced by the degree to which the embeddings of
the vulnerable and uncertain classes are distinct and separa-
ble. That is, the greater the distinction and separability of the
embedding, the more straightforward it is for the model to
differentiate between the two classes. To explore this aspect,
we conduct an experiment that involves visualizing the
model’s capability to distinctly segregate samples belonging
to the vulnerable and uncertain classes.

We employ t-distributed Stochastic Neighbor Embed-
ding (t-SNE) [10] to visualize the embeddings produced by
the DeepWukong, LineVul, ReVeal, and IVDetect models. T-
SNE is a machine learning algorithm for visualizing high-
dimensional data in a low-dimensional (typically two or
three) space. It calculates similarities between data points,
converting them into probabilities and minimizing their
Kullback-Leibler divergence [17] to preserve local struc-
tures. This process effectively clusters similar data, which
makes t-SNE valuable for identifying patterns and relation-
ships in multi-dimensional data.

We extract the embedding from the DeepWukong, Line-
Vul, ReVeal, and IVDetect models used in this RQ. The [CLS]
embedding vectors generated by the CodeBERT model rep-
resent the embedding for the LineVul model, while the final
fixed vector produced by the Graph Neural Network and
the representation-learning model represents the embed-
ding for the DeepWukong, ReVeal, IVDetect model, respec-
tively. It is worth noting that the embeddings are generated
for the testing datasets.

We create four scatter plots in total, each displaying the
reduced embedding along with their corresponding labels
(vulnerable or uncertain). The scatter plots are presented in
Figure 2. We observe that all the models we created, ex-
cept ReVeal and IVDetect, exhibit clear separation between
vulnerable and uncertain samples. The inability to clear sep-
aration may explain the comparatively lower performance
of the ReVeal and IVDetect model.

6 RESULTS

In this section, we present our experimental results with
respect to each RQ.

RQ1: How do the DeepWukong, LineVul, ReVeal, and IVDetect
models perform in a realistic evaluation setting compared to the
evaluation setting used in the original studies?

Approach. In this RQ, we evaluate the DeepWukong, the
LineVul, the ReVeal, and the IVDetect models using the Real-
Vul testing dataset described in Section 3. We use the Line-
Vul, ReVeal, and the IVDetect model trained in Section 5 for
the evaluation, i.e., we train using the same method as the
original LineVul, ReVeal, and IVDetect studies, respectively,
while using Real-Vul testing dataset for evaluation. Note that
LineVul, ReVeal, and IVDetect models are trained using real-
world vulnerability datasets. Since the DeepWukong model
in Section 5 is trained using SARD (an artificially created
vulnerability dataset), we train a new DeepWukong model
using the Big-Vul dataset for evaluation to simulate a fair
comparison with the other two models. First, we generate
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(a) DeepWukong. (b) LineVul. (c) ReVeal. (d) IVDetect.

Fig. 2: Scatter plots showing the class separation between vulnerable and uncertain samples in the original datasets of the
approaches. • denotes vulnerable samples and • denotes uncertain samples.

TABLE 3: Results of the DeepWukong, LineVul, ReVeal, and
IVDetect models when evaluated using the Real-Vul testing
dataset.

Model Accuracy
(%)

Precision
(%)

Recall
(%)

F1
(%)

AUC
(%)

DeepWukong 91 1 87 2 62

LineVul 89 1 90 2 58

ReVeal 89 10 80 17 61

IVDetect 85 2 84 2 59

the DeepWukong model inputs (XFGs) using the Big-Vul
dataset. We obtain a total of 28,294 vulnerable XFGs and
639,047 uncertain XFGs. Similar to preliminary analysis,
we train the DeepWukong model for 50 epochs using the
generated XFGs.

To evaluate the trained models (DeepWukong, LineVul,
ReVeal, and IVDetect) using the Real-Vul testing dataset,
we first generate the model inputs (XFG, chunk, CPG, and
PDG) for the Real-Vul testing dataset. These samples are
then evaluated using the respective trained models.

Results. Table 3 shows the results of the performance of the
DeepWukong, LineVul, ReVeal, and IVDetect models eval-
uated using the Real-Vul testing dataset. The DeepWukong
model obtains an accuracy, precision, recall, F1-score, and
AUC of 91%, 1%, 87%, 2%, and 62%, respectively. When
comparing these results to those obtained in Section 5 (i.e.,
compared to the results of the DeepWukong model trained
and tested using the SARD dataset), we observe a decrease
of 7, 86, 11, and 91 percentage points in accuracy, precision,
recall, and F1-score, respectively. The LineVul model ob-
tains an accuracy, precision, recall, F1-score, and AUC of
89%, 1%, 90%, 2%, and 58%, respectively. In comparison
to the results obtained in Section 5 (i.e., compared to the
results of the LineVul model trained and tested using the
Big-Vul dataset), we observe a decrease of 7, 95, 88, and
27 percentage points in accuracy, precision, F1-score, and
AUC, respectively. However, we also observe an increase of
6 percentage points in the recall.

The ReVeal model demonstrates an 89% accuracy rate,
with precision, recall, and F1-score values of 10%, 80%,
and 17%, respectively. When comparing these results to the

results from Section 5 where the ReVeal model was trained
and tested using the ReVeal dataset, we observe a decrease
of 19, 21, and 17 percentage points in precision, F1-score, and
AUC, respectively, but a 21 percentage points improvement
in recall.

The IVDetect model exhibits an accuracy of 85%, along
with precision, recall, and F1-score metrics of 2%, 84%,
and 2% respectively. In comparison to the outcomes from
Section 5, where the IVDetect model underwent training
and testing using the IVDetect dataset, a notable reduction
of 37 percentage points in precision, 22 percentage points
in the F1-score, and 24 percentage points in AUC can be
observed; however, an enhancement of 21 percentage points
in recall is also observed.

Overall, our findings reveal a substantial decrease in pre-
cision for all the models. This suggests that the predictions
made by these models contain a considerable number of
false positives, which can have a huge impact on the ef-
fectiveness of vulnerability detection. Specifically, the Deep-
Wukong model generated 439,494 false positives, while the
LineVul, ReVeal, and IVDetect models produced 114,629,
320,128, and 512,284 false positives, respectively. Such a
large number of false positives may have a large impact
on the usability of these models in practice.

To understand the models’ performance in terms of class
separation, we follow the same approach used in Section 5,
and plot embeddings of the models in two-dimensional
space. It is worth noting that the embeddings are generated
for the test split of Real-Vul dataset. Figure 3 presents the
scatter plots of model embeddings. For all the models, we
observe a substantial overlap between vulnerable and un-
certain samples of the Real-Vul dataset, which indicates that
the models do not distinguish between the classes clearly.
This lack of class separation explains the high number
of false positives produced by the DeepWukong, LineVul,
ReVeal, and IVDetect models.

Overall, our findings underscore the importance of eval-
uating vulnerability detection models using datasets that
reflect realistic settings. In this regard, our results demon-
strate the critical role played by the Real-Vul dataset in
understanding the true capabilities of such models. By uti-
lizing this dataset, we gain a more accurate understanding
of the performance of vulnerability detection models and
can identify areas that require improvement.
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(a) DeepWukong with Real-
Vul.

(b) LineVul with Real-Vul. (c) ReVeal with Real-Vul. (d) IVDetect with Real-Vul.

Fig. 3: Scatter plots showing the class separation between the vulnerable and uncertain samples. • denotes vulnerable
samples and • denotes uncertain samples.

ANSWER: Existing deep learning-based vulnerability
detection models, such as DeepWukong, LineVul, ReVeal,
and IVDetect produce a high number of false positives
when tested using datasets that represent more accurate
real-world testing settings.

RQ2: How do the DeepWukong, LineVul, ReVeal, and IVDetect
models perform in a realistic evaluation setting when trained
using a similar realistic training dataset?

Approach. In RQ1, we use the Real-Vul dataset for evalua-
tion purposes, i.e., we evaluate the effectiveness of our mod-
els using Real-Vul. However, in this RQ, we use the Real-Vul
dataset for both model training and evaluation. The training
dataset is imbalanced (higher uncertain samples). Hence,
we also investigate the impact of the imbalanced dataset
on model performance by training additional models on a
balanced dataset. To create a balanced dataset for training,
we randomly select uncertain samples equal to the number
of vulnerable samples.

Overall, we train a total of eight models (one
imbalanced-trained and one balanced-trained model for
DeepWukong, LineVul, ReVeal, and IVDetect techniques)
using the same training parameters used in Section 5. We
evaluate the trained DeepWukong, LineVul, ReVeal, and
IVDetect models using the same XFG, chunk, CPG, and
PDG test dataset used in RQ1 (i.e., Real-Vul test dataset).

Results. Table 4 shows the results of the DeepWukong,
LineVul, ReVeal, and IVDetect models that are trained us-
ing imbalanced datasets. The DeepWukong and LineVul
models both exhibit an accuracy of 99%, with precision,
recall, F1-scores at 0%, and AUC at 50%. In comparison,
the ReVeal model exhibits 95% accuracy, 2% precision, 10%
recall, 3% F1-score, and 50% AUC. Similarly, the IVDetect
model demonstrates an 81% accuracy, with precision, recall,
F1-score, and AUC recorded at 2%, 1%, 0%, and 49.6%,
respectively. The accuracy is 99% for both the DeepWukong
and LineVul models, while the precision, recall, F1-scores,
and AUC are 0% and 50%, respectively. For the ReVeal
model, the accuracy, precision, recall, F1-score, and AUC
are 95%, 2%, 10%, 3%, and 50%, respectively. A common
trend across the models is that the precision, recall, and F1-
scores are substantially reduced with respect to the results

TABLE 4: Results of the DeepWukong, LineVul, ReVeal,and
IVDetect models when trained using the imbalanced dataset
(Real-Vul dataset).

Model Accuracy
(%)

Precision
(%)

Recall
(%)

F1
(%)

AUC
(%)

DeepWukong 99 0 0 0 50

LineVul 99 0 0 0 50

ReVeal 95 2 10 3 50.1

IVDetect 81 2 1 0 49.6

in Section 5 and RQ1.
The high accuracy scores of the models are due to the

imbalanced nature of the datasets, which have a larger
number of uncertain samples. This imbalance leads models
to often predict samples as uncertain, boosting accuracy
but reducing recall, precision, and F1-scores. The models
have difficulty learning from the fewer vulnerable samples
because they focus on minimizing a loss function, which
discourages wrong predictions. Consequently, they tend
to classify samples as uncertain to reduce errors despite
inaccuracies. However, the ReVeal model performs better
as it uses the SMOTE [18] algorithm to balance the classes
by oversampling the minority (vulnerable samples).

Table 5 shows the performance of the DeepWukong,
LineVul, ReVeal, and IVDetect models that are trained using
balanced datasets (XFGs, chunks, CPGs, and PDGs). The
results indicate that the DeepWukong model trained on the
balanced dataset performs with 89% accuracy, 1% precision,
53% recall, 2% F1-score, and 51.4% AUC, which is down
by 9, 86, 45, 91, and 36 percentage points, respectively, com-
pared to the DeepWukong model evaluated in Section 5. The
LineVul model trained on the balanced dataset performs
with 99% accuracy, 11% precision, 99% recall, 20% F1-score,
and 51.4% AUC. The precision, F1-scores, and AUC are
down by 85, 70, and 33.6 percentage points, respectively,
compared to the LineVul model evaluated in Section 5.
When trained on the balanced dataset, the ReVeal model
showcases a performance of 91% accuracy, 31% precision,
45% recall, 36% F1-score, and 51.3% AUC. In comparison
to the ReVeal model evaluated in Section 5, the recall, F1-
scores, and AUC experience a decline of 14, 2, and 26
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TABLE 5: Results of the DeepWukong, LineVul, ReVeal, and
IVDetect models when trained using the balanced dataset
(Real-Vul dataset).

Model Accuracy
(%)

Precision
(%)

Recall
(%)

F1
(%)

AUC
(%)

DeepWukong 89 1 53 2 51.4

LineVul 99 11 99 20 51.4

ReVeal 91 31 45 36 51.3

IVDetect 83 8 32 6 52.3

percentage points, respectively. The IVDetect model trained
on the balanced dataset performs with 83% accuracy, 8%
precision, 32% recall, 6% F1-score, and 52.3% AUC. The
precision and recall are reduced by 31 percentage points,
whereas accuracy, F1-score, and AUC are reduced by 2,
18, and 30 percentage points, respectively, compared to the
IVDetect model of Section 5.

Overall, the results suggest that these models still pro-
duce a high number of false positives, even when trained
using a dataset that is similar to the realistic evaluation
dataset.

When we compare how the models did compare to
earlier evaluation (RQ1) with the original dataset, we found
that the recall scores for the DeepWukong, ReVeal, and
IVDetect models dropped by 34, 35, and 52 percentage
points, respectively. The differences in how well the Deep-
Wukong, LineVul, ReVeal, and IVDetect models performed
could be because of the kind of input they use (like XFG,
chunks, CPGs, and PDGs) and model architecture (GNN,
CodeBERT). Prior research [19] shows that models using
graphs usually perform a bit better than those using text,
which helps us understand why ReVeal (using graphs)
performed better than LineVul (using text).

We assess the models when trained on Real-Vul and
tested on their corresponding original datasets (such as
SARD, ReVeal, BigVul, and IVDetect) to cross-check the im-
pact of realistic settings. Our experiments indicate a substan-
tial improvement in performance, with AUC improvements
ranging from 8 to 32 percentage points compared to the
model trained and tested solely on the Real-Vul dataset.
Specifically, on the original test dataset, the DeepWukong
model achieved an accuracy of 88%, precision of 81%, recall
of 89%, F1-score of 84%, and an AUC of 81%, observing im-
provements over its Real-Vul dataset performance in every
metric except accuracy, which decreased by one percentage
point. The LineVul model achieved an accuracy of 80%,
precision of 84%, recall of 69%, F1-score of 75%, and AUC of
79.9%, showing declines in accuracy and recall by 19 and 30
percentage points, respectively, but gains in precision, F1-
score, and AUC. The ReVeal model experienced a 5 percent-
age point decrease in accuracy while seeing improvements
of 4, 6, 5, and 8 percentage points in precision, recall, F1-
score, and AUC, respectively. The IVDetect model achieved
an accuracy of 78%, precision of 28%, recall of 48%, F1-score
of 35%, and AUC of 78.3%, with a decrease in accuracy
by five percentage points but increases in all other metrics.
Overall, the improved performance suggests that the prior
datasets might not accurately represent realistic settings,
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Fig. 4: Project Size vs. False Positive Rate for the analyzed
projects.

thus overestimating model performance.
The study found that using a balanced dataset for

training significantly improves model performance in de-
tecting vulnerabilities. Specifically, the DeepWukong model
showed improvements in precision, recall, and F1-scores by
1, 53, and 2 percentage points, respectively, after training
on a balanced vs. an imbalanced dataset. This improve-
ment trend was also observed in the LineVul, ReVeal, and
IVDetect models. However, despite these gains, the issue of
generating false positives remains a challenge for all models.

ANSWER: Despite training the DeepWukong, LineVul,
ReVeal, and IVDetect models with a realistic training
dataset that closely resembles the realistic test dataset, we
observe that these models still generate a high number of
false positives (low precision).

7 DISCUSSION

In this section, we delve into the false positive predictions
and further examine the performance of the models under
review by evaluating their effectiveness across different
types of vulnerabilities and levels of severity.
Analysis of false positives. To understand why the studied
models produce false positives, we have conducted new
analyses from three perspectives.

1) Size of Project. The motivation for considering project
size as a critical factor arises from the notion that larger
projects offer a more extensive dataset for model learning.
This allows models to better comprehend and identify
complex vulnerability patterns, potentially leading to a
reduction in false positive rates. In Figure 4, we illustrate
the influence of project size on false positive rates where
we observe a downward trend, i.e., as the size of the
project increases, the false positive rate correspondingly
decreases. Comparing the smallest project, Jasper, consist-
ing of 183 training and 132 testing samples, with larger
projects such as Chrome and Linux, which encompassed
44,303 and 71,706 training samples and 81,351 and 47,181
testing samples, respectively. The findings supported our
hypothesis: larger projects exhibited substantially lower
false positive rates (85%-87% for Chrome and 79%-85%
for Linux).

2) Code complexity analysis. Machine learning (ML)
models often struggle to comprehend highly complex
code [20], which can affect the performance of vulner-
ability detection tools. To investigate this, we measured
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the cyclomatic complexity across our test dataset and
conducted Mann-Whitney U tests to compare complex-
ities across different categories: true positive vs. false
positive (p = 0.043) and true negative vs. false negative
(p = 0.014). Our comparison suggests that increased
complexity leads to model confusion, resulting in higher
false positive rates.

3) Overfitting assessment. ML models may assign excessive
importance to specific features, a phenomenon referred
to as ”overfitting” [21]. This tendency can detrimentally
impact model performance. For a detailed examination of
”overfitting,” we employed LIME [22], an explainability
tool, to pinpoint the features influencing the models’ de-
cisions. An example of the LIME explanation is available
in the online Appendix1. Note that our analysis encoun-
tered challenges with three of our models DeepWukong,
ReVeal, and IVDetect —that rely on Joern5 to convert
source code into abstract graphs. This process introduced
complexities in tracing back to the original code for
explainability purposes. Consequently, we restricted our
analysis to false positives identified solely by the LineVul
model. To confirm our findings, we conducted hypothesis
testing. First, we create a set of positive tokens from the
LIME output (the model predicts positive). Second, we
calculate the ratio of positive tokens available in the test
dataset samples. Finally, we apply the Mann-Whitney U
test with α = 0.05 to compare the ratio in false positive
and true positive samples but find no significant statistical
difference (p = 0.13).
To address this challenge, we propose augmenting the

dataset with dead code, a technique that enhances dataset
diversity more effectively than simple resampling by creat-
ing varied minority class examples, avoiding the reinforce-
ment of misleading patterns [23]. Dead code, which does not
influence program output, introduces variations in textual
data through syntactic transformations while preserving
the original meaning. By broadening the hypothesis space
for deep learning models, augmentation serves as implicit
regularization, reducing overfitting to specific tokens and
promoting model generalization [24].
Influenced by [25], we augmented the training dataset with
dead code to enrich the diversity and mitigate the overem-
phasis on specific tokens. We employed eleven distinct
augmentation strategies, elaborated in the online appendix.
We particularly focused on augmenting vulnerable samples
to balance them with uncertain (non-vulnerable) samples,
thereby enhancing dataset diversity.
We train the four models in our study using the augmented
dataset and evaluate them against the test data. Table 6
provides an overview of the performance metrics. Com-
pared to models that we train using balanced datasets, the
AUC substantially improves for all models. Specifically, we
find that the text-based model “LineVul ” improved more
substantially in terms of F1 and AUC than the graph-based
models (i.e., DeepWukong, LineVul, ReVeal, and IVDetect).
Conversely, we find that the recall of the LineVul model
drops by 34 percentage points. The previous model labeled
a large proportion of samples as vulnerable and, conse-
quently, achieved an almost perfect recall (at the cost of low

5. https://github.com/joernio/joern

TABLE 6: Results of the DeepWukong, LineVul, ReVeal, and
IVDetect models when trained using the augmented data.
(Values in parentheses show the difference from training on a non-
augmented balanced dataset)

Model Accuracy
(%)

Precision
(%)

Recall
(%)

F1
(%)

AUC
(%)

DeepWukong 91 (↑ 2) 4 (↑ 3) 48 (↓ 4) 7 (↑ 5) 58 (↑ 6.6)

LineVul 98 (↓ 1) 37 (↑ 26) 65 (↓ 34) 46 (↑ 26) 81.8 (↑ 30.4)

ReVeal 92 (↓ 1) 33 (↑ 2) 47 (↑ 2) 38 (↑ 2) 57 (↑ 5.6)

IVDetect 78 (↓ 5) 10 (↑ 2) 35 (↑ 3) 16 (↑ 10) 53 (↑ 0.7)

TABLE 7: Performance of the models per severity.

Model Low (%) Medium (%) High (%)

DeepWukong 18.26 20.56 9.7

LineVul 20.11 21.28 10.89

ReVeal 21.66 26.57 10.07

IVDetect 15.08 17.46 9.06

precision). LineVul ’s improvement in F1 suggests that the
improvement in precision (26 percentage points) outweighs
the cost of the recall. We conclude that augmentation can
mitigate false positives and improve the practical applica-
bility of vulnerability detection models.

Note that while text-based models benefit from the vari-
ability introduced by dead code, graph-based models may
require augmentations that induce structural or data flow
changes. Hence, we encourage future work to enhance the
effectiveness of dead code injection for graph-based models.
The disparity in the impact of dead code injection between
text-based and graph-based models stems from their dif-
fering code processing approaches. Text-based models may
experience enhanced performance due to the variability
introduced by dead code, perceiving it as a regularization
feature [26]. Conversely, graph-based models, which lever-
age PDGs or DFGs, may regard the dead code as noise, as
it does not alter the fundamental program structure or data
flow, leading to marginal performance improvements.
Performance per vulnerability type. In our dataset, each
vulnerability sample is associated with a specific Common
Weakness Enumeration (CWE). The security community
utilized CWEs to group vulnerability types into clusters
based on their common characteristics. These clusters are
collectively known as the Software Fault Pattern (SFP) [27],
and they consist of sets of similar CWEs. To assess the
performance of the models in detecting vulnerabilities be-
longing to different clusters, we first calculate the F1-score
(using the model trained in RQ2) for each CWE category.
Then, we group these CWEs based on the Software Fault
Pattern (SFP) clusters.

Figure 5 presents the performance of the studied models
in terms of F1-scores across different clusters. Overall, we
observe that the performance varies across different clusters,
with values up to 26.34% for DeepWukong, 27.10% for
LineVul, 33.61% for ReVeal, and 21.60% for IVDetect. For
instance, the models perform exceptionally well in detect-
ing vulnerabilities that belong to clusters 895 or 896, with

https://github.com/joernio/joern
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(a) DeepWukong model.
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(b) LineVul model.
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(c) ReVeal model.
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(d) IVDetect model.

Fig. 5: Performance of the models per SFP cluster.

F1-scores of 33.6% and 23.31%, respectively. Cluster 895
includes CWEs associated with information leaks, such as
returning a private data structure from a public method
(CWE 495) or storing a password in plaintext (CWE 256).
On the other hand, cluster 896 comprises CWEs related to
tainted input, such as code injection (CWE 94) and improper
input validation (CWE 20).

However, the models encounter more difficulties in de-
tecting vulnerabilities belonging to clusters 893, 905, or
907. Cluster 893 contains CWEs related to path traversal
(e.g., absolute path traversal CWE 36). Cluster 905 groups
vulnerabilities related to predictability-related CWEs (e.g.,
predictable value range from previous values CWE 343),
and cluster 907 consists of miscellaneous CWEs (e.g., client-
side enforcement of server-side security CWE 602).

The models performed better at detecting vulnerabili-
ties about information leaks or tainted inputs (clusters 895
and 896), possibly because these issues need less context
to detect, with all the needed details present in the code
itself. However, identifying vulnerabilities like path traver-
sal (cluster 893) demands understanding the file system’s
structure, and cluster 905 (predictability issues) might need
previous observations. Notably, no model could detect any
vulnerabilities in cluster 907, which includes complex issues
tied to the compiler, architecture, and design. Vulnerabilities
may arise from the interactions between components, which
may not be adequately represented by function-level vul-
nerability datasets. Our findings show that the performance
of the model is lower on CWEs related to system-level
vulnerabilities (e.g., CWE-893: Improper Path Traversal),
suggesting that these models struggle to detect system-level
vulnerabilities effectively.

However, it’s important to consider that our observation
might be influenced by data distribution bias. Typically, ma-
chine learning models perform better in specific categories
if they have sufficient data from those categories. To verify
this assumption, we count the number of samples for each
cluster in our dataset and identify the three most and least
frequent clusters. We find that clusters 890 (32%), 896 (25%),
and 892 (14%) are the most frequent in our dataset, while
clusters 905 (0.048%), 889 (0.024%), and 907(0.003%) are the

least frequent.
From Figure 5, we can observe that the models

achieve lower performance for the cluster with the highest
frequency compared to other clusters with lower frequency.
For example, the models did not achieve their highest
F1-score when samples belonged to the most frequent
cluster in the dataset (cluster 890). Conversely, the models
achieve their lowest F1-scores for cluster 907, which is the
least frequent sample in our dataset. This indicates that
while other factors, such as architecture and input type,
influence model performance in detecting vulnerabilities,
the distribution of samples also plays a crucial role in
making the model performance robust across different SFP
clusters (CWE types). The analysis indicates the inconsistent
performance of vulnerability detection models across different
CWE clusters, highlighting the influence of data distribution
and contextual complexity. Future research in vulnerability
detection should concentrate on enhancing data strategies and
model architecture to address contextual complexity, as well as
incorporating system-level vulnerabilities to improve the overall
coverage of vulnerability detection models.

Performance per vulnerability severity. In our investiga-
tion, we extend our analysis to consider the severity of vul-
nerabilities. In our dataset, each vulnerability is categorized
into one of three severity types: high, medium, or low. To
evaluate the models based on severity, we follow the same
approach used for evaluating them per vulnerability type.

Table 7 presents the performance of the models based on
severity. The figure illustrates that all four models achieve
relatively higher F1-scores when the severity of a vulner-
ability is medium, with a slightly lower F1-score for low-
severity vulnerabilities. These findings raise concerns about
vulnerability detection, as the models demonstrate weaker
capabilities in detecting high-severity vulnerabilities.

It is essential to note that this observation may be
influenced by the severity distribution within our Real-
Vul dataset. Further analysis revealed that 60.5% of vul-
nerabilities in the dataset are assigned medium severity,
while only 33.9% are assigned low severity, and 5% are
assigned high severity. This distribution of severity lev-
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TABLE 8: Results of the CodeLlama and Mixtral models
when trained using the augmented data.

Model Accuracy
(%)

Precision
(%)

Recall
(%)

F1
(%)

AUC
(%)

CodeLlama 80 34 54 42 67

Mixtral 83 38 59 46 71

els could be contributing to model performances across
different severity types. The investigation reveals models are
more effective at detecting medium-severity vulnerabilities, with
decreased accuracy for high-severity ones. This underscores the
need for future research to focus on enhancing the detection of
high-severity vulnerabilities, considering the potential impact of
severity distribution in training datasets.
Efficacy of Large Language Models. Recent advancements

in generative AI have led to the development of specialized
Large Language Models (LLMs) for natural language under-
standing and code interpretation, such as CodeLlama [28]
and Mixtral [29]. CodeLlama, a 7 B parameter model, excels
in parsing and generating code across multiple program-
ming languages, trained on a vast array of sources, in-
cluding open-source projects and technical documentation,
showcasing capabilities in code completion, bug detection,
and retrieval. Mixtral [29] (7 B parameter) is a Sparse
Mixture-of-Experts (SMoE) network. Its architecture can be
divided into three parts: an input embedding layer, several
decoder blocks, and a language model decoding head. The
model is trained using supervised fine-tuning on an instruc-
tion dataset and Direct Preference Optimization (DPO) on
a paired feedback dataset. The pre-training involves data
sourced from the open web. In terms of performance, Mix-
tral has shown impressive results in various benchmarks,
surpassing Llama 2 70B and equating or outperforming
Open AI GPT-3.5 in most standard tests despite not being
specifically tailored for code tasks.

We fine-tuned these models using parameter-efficient
fine-tuning [30] to detect vulnerabilities in C++ functions,
using the Real-Vul dataset for training and a separate test
dataset for evaluation. The results, detailed in Table 8,
indicate that these LLMs outperform other tools like Deep-
Wukong, ReVeal, and IVDetect in terms of AUC. However,
when compared to LineVul, CodeLlama and Mixtral’s AUC
lags by 14.8 and 10.8 percentage points, respectively.

The lower performance of the LLMs in comparison to
LineVul may stem from multiple reasons, such as data
efficiency, model generalizability, and the trade-offs inherent
in model complexity. LLMs, with their extensive parameter
count, may not always generalize well to specific tasks
outside their training scope, leading to suboptimal perfor-
mance. In contrast, models like LineVul, through targeted
training and optimization, can achieve better alignment
with specific tasks. A similar observation has also been ob-
served in another task where a RoBERTa model outperforms
Llama 2 [31] and the Mixtral model [32]. The study shows
that specialized tools (LineVul) outperform general large language
models (LLMs) in vulnerability detection, highlighting the need
for future work to improve LLMs’ specificity and efficiency in
vulnerability detection tasks.

8 RELATED WORK

In this section, we discuss the related works and reflect on
how they compare with ours.

Vulnerability detection datasets. Grahn et al. [33] found
that some of the vulnerability detection datasets [7, 34]
were not very useful for training models. To address this,
they proposed a new dataset called Wild C, comprising
10.3 million C/C++ files from multiple open-source projects.
However, the drawback of Wild C is that it lacks labels for
each file, making it unsuitable for building vulnerability
detection classification models. In contrast, the Real-Vul
dataset offers the complete source code of projects along
with labeled samples as vulnerable or uncertain, making it
more suitable for training vulnerability detection models.

The Big-Vul dataset [7] is a collection of C/C++ functions
from 348 open-source GitHub projects, used in vulnerabil-
ity detection studies. However, it lacks representation of
the entire codebase since it only includes functions from
vulnerability-fixing commits. To address this, we introduce
the Real-Vul dataset, which includes all source code from
the top ten real-world projects by vulnerability counts in
Big-Vul. This provides a more comprehensive and realistic
dataset for training and evaluating vulnerability detection
models.

Studies on vulnerability detection techniques. Several
studies explored the effectiveness of traditional machine
learning techniques [5, 35, 36]. Neuhaus et al. [35] inves-
tigated the prevalence of software vulnerabilities in Red
Hat packages using Support Vector Machines (SVM) [37].
The study analyzed the defect data from over 3,241 Red
Hat packages and evaluated the effectiveness of SVM in
identifying vulnerabilities in software packages. Zheng et
al. [5] examined the effectiveness of different machine learn-
ing techniques, like Decision Tree [38], Random Forests
[39], k-nearest neighbors (KNN) [40], and SVM, in detecting
software vulnerabilities. The results of the study provided
insights into the strengths and weaknesses of different ma-
chine learning techniques for vulnerability detection. Yan et
al. [36] employed a combination of static analysis, machine
learning, and typestate modeling techniques for static de-
tection of use-after-free vulnerabilities in software. Lomio et
al. [41] investigated whether machine learning algorithms
like SVM, KNN, Decision Tree, and Boosting algorithms
[42, 43, 44] could improve the performance of Just-in-Time
software vulnerability detection utilizing various software
metrics (process metrics, product metrics, and text metrics).

Other studies focused on exploring the potential of vari-
ous deep learning methods to detect vulnerabilities [4, 8, 11,
13, 45, 46, 47]. For example, Convolutional Neural Networks
(CNN) [48] have been used to forecast software defects and
locate defective source code [45]. Li et al. [47] made multiple
kinds of deep neural networks such as CNN, LSTM [49],
and GRU [50] to detect vulnerabilities. Vuldeepecker [13]
detects resource management issues and buffer overflows
by training an LSTM model with code embedding and
data-flow information of a program. VGDetector [46] uses
a control flow graph and a graph convolutional network
[51] to detect control-flow vulnerabilities. Zhou et al. [11]
pinpointed bugs at the method level using Graph Neural
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Networks (GNN) and program dependence graph.
The aforementioned work used either synthetic datasets

(e.g., SARD), datasets created using oracles like static anal-
ysis tools (e.g., [12, 52]), or real-world datasets that do not
accurately reflect the realistic settings (e.g., [1, 7, 11]). This
motivated us to create a new dataset that tackles the lack
of realistic evaluation settings in the existing techniques. We
create Real-Vul dataset, which is more comprehensive than
the existing vulnerability detection datasets.

Chakraborty et al. [1] introduced the ReVeal dataset,
similar to our study, to highlight limitations in existing
deep learning-based vulnerability detection models. How-
ever, they have considered only unchanged functions of
vulnerability fixing commits as the uncertain sample. Ad-
ditionally, the dataset suffers from label inconsistency. Fu
et al. [8] proposed LineVul, a CodeBERT-based model [15],
for vulnerability detection. Our study differs from the prior
work since we propose a realistic dataset Real-Vul which is
free from the limitations of prior studies. Additionally, we
evaluate four state-of-the-art techniques (i.e., [4], [8], [1] ) on
Real-Vul, providing the empirical evidence that the machine
learning models exhibit limited performance when assessed
in real-world settings. Ding et al. [53] share similar insights
regarding data quality in vulnerability datasets; however,
they maintained data quality through heuristic-based man-
ual verification and by using a vulnerability database. In
contrast, our study aims to create a more realistic dataset by
maintaining the ratio of vulnerable to uncertain functions
and reducing label inconsistency. Moreover, we found that
augmenting the dataset can improve model performance.

9 THREATS TO VALIDITY

Our study uses the Big-Vul dataset [7] to construct Real-
Vul. It is possible that some vulnerable samples in the Big-
Vul dataset are mislabelled. However, the labeled samples
in the dataset were manually verified by Fan et al. [7].
Also, the Real-Vul dataset may not fully represent all real-
world scenarios since it is constructed using only ten open-
source projects. However, it is worth noting that these ten
projects are well-established and popular (e.g., Chrome 6and
Linux 7 and have been extensively studied and utilized in
previous research [1, 11]. In Real-Vul dataset, we labeled
all the unchanged functions of a repository as uncertain.
It is possible that undiscovered vulnerabilities may exist
in these functions. However, we are limited by the lack
of the knowledge required to discover undiscovered vul-
nerabilities and the threat is present in prior datasets as
well [1, 7, 11]. In RQ2, we use balanced datasets where
the number of vulnerable and uncertain samples is equal.
However, the random selection of samples for the balanced
datasets may impact our results since different random
selections can lead to different findings [54]. To address
this issue, it is recommended to train the models multiple
times with various sample sets and examine the outcomes.
Unfortunately, this approach was not feasible due to our
constrained computational resources.

In our study, we excluded methods that have identical
MD5 hashes but conflicting labels (label inconsistency).

6. https://chromium.googlesource.com/chromium/src/
7. https://github.com/torvalds/linux

Despite this, our dataset might still have subtle label in-
consistencies that arise from variations in whitespace or
new lines, which are challenging to detect. To mitigate this,
we employed a regex-based strategy to merge multiple in-
stances of new lines and whitespace into single occurrences.
Nonetheless, there may be scenarios where this method falls
short.

Furthermore, we focus our work on assessing the ef-
ficacy of deep learning-based techniques, which can limit
the generalizability of our findings to other techniques.
Future works should consider evaluating other techniques
like static and dynamic analysis tools on the Real-Vul dataset
and analyze the results.

10 IMPLICATION

Below, we distill the implication of our findings for the
development of research communities.
The Real-Vul dataset can be used to develop tools to assist
developers in mitigating vulnerabilities. For example,
• Facilitating research studies for proposing risk assess-

ment and prioritization techniques. The dataset contains
severity information for each vulnerable sample. This
data can be used to train a model to predict the presence
of vulnerabilities and assess the potential risk or severity.
This aids in prioritizing security efforts and resource
allocation.

• Supporting research on automated patch generation.
The dataset contains before-fix and after-fix versions of
vulnerable functions. This feature can inform the devel-
opment of automated patch-generation tools.

• Characterizing the evolution of software with respect
to its vulnerabilities. The dataset contains vulnerabil-
ity data of 10 common and popular projects that span
ten years of history. It contains 270,919 samples, of
which 5,528 are vulnerable. Future research could explore
whether severe vulnerabilities have become more or less
prevalent over time or how coding practices have evolved
to mitigate vulnerabilities in these projects.

11 CONCLUSION

In this paper, we study the performance of deep learning-
based vulnerability detection models in realistic vulnerabil-
ity detection settings. First, we create a new comprehensive,
realistic vulnerability detection dataset, called Real-Vul. Real-
Vul contains complete source code samples of ten diverse
real-world open-source projects. Then, we evaluate four
state-of-the-art models, LineVul, DeepWukong, ReVeal, and
IVDetect on the Real-Vul dataset. Our evaluation indicates
a considerable decrease in model performance, as evidenced
by a drop in precision and F1 scores of up to 95 and 91 per-
centage points, respectively. Our investigation also reveals
that the embeddings generated by these models depict a
substantial overlap between vulnerable and uncertain sam-
ples. This suggests that such models struggle to differentiate
between vulnerable and uncertain samples in the Real-Vul
dataset, resulting in a high number of false positives. Finally,
we observe fluctuations in model performance based on vul-
nerability characteristics (e.g., vulnerability types and sever-
ity). Our study argues that when it comes to identifying

https://chromium.googlesource.com/chromium/src/
https://github.com/torvalds/linux
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vulnerabilities in realistic vulnerability detection settings,
things may not be as good as they seem, and there is a need
for improved model design and evaluation approaches to
achieve more accurate vulnerability detection performance.
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