
1

Characterizing the Prevalence, Distribution, and
Duration of Stale Reviewer Recommendations

Farshad Kazemi, Student Member, IEEE, Maxime Lamothe, Member, IEEE,
and Shane McIntosh, Member, IEEE

Abstract—The appropriate assignment of reviewers is a key factor in determining the value that organizations can derive from code
review. While inappropriate reviewer recommendations can hinder the benefits of the code review process, identifying these
assignments is challenging. Stale reviewers, i.e., those who no longer contribute to the project, are one type of reviewer
recommendation that is certainly inappropriate. Understanding and minimizing this type of recommendation can thus enhance the
benefits of the code review process. While recent work demonstrates the existence of stale reviewers, to the best of our knowledge,
attempts have yet to be made to characterize and mitigate them.
In this paper, we study the prevalence and potential effects. We then propose and assess a strategy to mitigate stale recommendations
in existing code reviewer recommendation tools. By applying five code reviewer recommendation approaches (LearnRec,
RetentionRec, cHRev, Sofia, and WLRRec) to three thriving open-source systems with 5,806 contributors, we observe that, on average,
12.59% of incorrect recommendations are stale due to developer turnover; however, fewer stale recommendations are made when the
recency of contributions is considered by the recommendation objective function. We also investigate which reviewers appear in stale
recommendations and observe that the top reviewers account for a considerable proportion of stale recommendations. For instance, in
15.31% of cases, the top-3 reviewers account for at least half of the stale recommendations. Finally, we study how long stale reviewers
linger after the candidate leaves the project, observing that contributors who left the project 7.7 years ago are still suggested to review
change sets. Based on our findings, we propose separating the reviewer contribution recency from the other factors that are used by
the CRR objective function to filter out developers who have not contributed during a specified duration. By evaluating this strategy with
different intervals, we assess the potential impact of this choice on the recommended reviewers. The proposed filter reduces the
staleness of recommendations, i.e., the Staleness Reduction Ratio (SRR) improves between 21.44%–92.39%. Yet since the strategy
may increase active reviewer workload, careful project-specific exploration of the impact of the cut-off setting is crucial.

Index Terms—Code Review, Code Reviewer Recommendation, Developer Turnover

✦

1 INTRODUCTION

Code review is the practice of having peer developers in-
spect change sets, i.e., cohesive units of change to a codebase
(e.g., fixes to defects, feature additions) [3]. Past work [11]
has shown that reviewer feedback spans concerns about the
impact that the change sets have on the evolvability of the
codebase and the functionality of the system.

Although AI-based tools have been proposed to replace
or augment human reviewers in code review [16, 24, 26],
projects today still rely on humans to conduct reviews. The
selection of reviewers with appropriate expertise directly
impacts the quality [29, 43], duration [47], and outcome [10]
of the code review process. This challenge is amplified in
large organizations with swaths of developers and files,
where it is difficult to identify who is knowledgeable about
changed modules. For instance, Thongtanunam et al. [47]
found that in several open-source communities, the code
reviewer assignment problems delays the change set resolu-
tion by an average of 12 days.

• Farshad Kazemi and Shane McIntosh are with the David R. Cheriton
School of Computer Science, University of Waterloo, Canada.
E-mail: {farshad.kazemi, shane.mcintosh}@uwaterloo.ca

• Maxime Lamothe is with the Department of Computer Engineering and
Software Engineering, Polytechnique Montreal, Canada.
E-mail: maxime.lamothe@polymtl.ca

Manuscript received date; revised date.

Code Reviewer Recommendation (CRR) approaches have
been developed to suggest suitable reviewers for a change
set by ranking potential candidates. They evaluate contribu-
tors using their objective functions, taking into account fac-
tors such as experience [45], ownership [34], and developer
interactions [38] and suggest the candidates with the highest
scores to review the change set.

Traditionally, CRR approaches are evaluated by apply-
ing them to historical data, and comparing recommended
reviewer lists to those who performed the review; however,
recent studies call this practice into question. For example,
Kovalenko et al. [22] found that the top recommendations
are often known to developers. Thus, when recommenda-
tion approaches are considered correct (i.e., they recommend
the reviewer who performed the review), their recommen-
dations are often obvious choices and of limited value.
Moreover, prior work [13] found that recommended review-
ers who did not perform the review would often have been
appropriate assignees. Thus, when CRR approaches are
considered incorrect, the implications are often unclear. This
raises a question: when can researchers and tool builders be
certain that recommended reviewers are truly incorrect?

In this paper, we study stale recommendations—a class
of recommended reviewers that are certainly incorrect. We
define a stale recommendation as a recommended reviewer
who has stopped contributing to the project under analysis.
Since these contributors cannot perform the review, they

© 2024 IEEE. Author pre-print copy. The final publication is available online at: https://doi.org/10.1109/TSE.2024.3422369

https://doi.org/10.1109/TSE.2024.3422369

2

add no value to review recommendation lists. Indeed, the
interviewees of Kovalenko et al. [22] point out that it is
not uncommon for recommendation lists to include stale
reviewers. Furthermore, Zhang et al. [51] found that 91.03%
of the negative feedback they received from practitioners
about the performance of a proprietary CRR system was
about “irrelevant recommendations,” where stale recom-
mendations comprise 23.83% of this category. In contrast,
other factors, such as a lack of prior participation in code re-
view, only accounted for 8.97% of all the negative feedback.
Aligned with prior work [22], the study further revealed that
contributors frequently change their focus area or switch
teams, potentially making them stale for their prior focus
areas and development teams. These observations, coupled
with the incontrovertible effect that stale recommendations
have on the performance of CRR approaches (unlike other
types of incorrect recommendations), highlight the consid-
erable risks that stale recommendations pose to the quality
of CRRs and provide an opportunity to better understand
stale reviewer recommendations to mitigate the issue. Prior
studies have explored the effect of stale reviewers through
the lens of turnover-induced knowledge loss [9, 36, 39];
however, to the best of our knowledge, their characteristics
and other potential effects on reviewer recommendation are
yet to have been explored.

Using data from the Kubernetes, Rust, and Roslyn open-
source projects, we study the prevalence of the stale rec-
ommendations that are produced by five reviewer recom-
mendation approaches (LearnRec [32], RetentionRec [32],
cHRev [50], Sofia [32], and WLRRec [1]). We find that on
average, stale recommendations account for 12.02%, 8.33%,
and 16.44% of incorrect recommendations that are produced
by the cHRev [50], Sofia [32], and WLRRec [1] approaches
per quarterly period, respectively, with medians of 10.28%,
6.63%, and 14.72%. Furthermore, when the number of rec-
ommendations to be produced is set to one, two, and three,
CRR approaches produce at least one stale recommendation
for up to 33.52%, 55.47%, and 69.18% of change sets, respec-
tively, with medians of 6.34%, 15.01%, and 23.36%.

Since stale recommendations (1) represent a notable
portion of incorrect recommendations, (2) can influence a
considerable proportion of change sets, and (3) have clear
implications (unlike other incorrect recommendations), we
aim to characterize them and propose mitigation strategies.
To do so, we address three Research Questions (RQs):

RQ1 Are code reviewer recommendation approaches
resilient to stale recommendations?
Motivation: For a CRR approach, it is desirable to
be resilient to developer turnover, while also suggest-
ing suitable reviewers. However, in reality, CRR ap-
proaches are susceptible to changes in the set of active
reviewers. This RQ aims to explore the extent to which
stale reviewers are prevalent in the recommendations
produced by the studied CRR approaches.
Results: CRR approaches that consider the recency of
contributions tend to be more robust to stale recom-
mendations. For instance, RetentionRec suggests no
stale recommendations in the studied periods, while all
LearnRec [32] recommendations are stale in 80.39% of
all the studied quarters. We establish the worst and best
performers as benchmarks and assess the effectiveness

of each approach relative to these benchmarks. We
introduce the Recommender Adaptability Score (RAS) to
estimate an approach’s capacity to handle the volatil-
ity of active contributors (larger RAS values indicate
greater resilience). We observe that cHRev, Sofia, and
WLRRec have median RAS values of 91.87%, 94.27%,
and 84.66%, respectively, indicating that WLRRec is the
least resilient, whereas Sofia is the most resilient.

RQ2 Distribution: How is staleness distributed among
recommendations?
Motivation: If staleness is concentrated among a few
reviewers, targeting these specific individuals would
be more effective than strategies identifying many de-
parted reviewers. Thus, to guide future work, we study
how staleness is distributed across personnel.
Results: Staleness is highly concentrated for all of the
studied recommendation approaches across the studied
projects. Indeed, in 15.31% of periods over various
evaluation settings, the top-3 reviewers account for at
least half of the total observed staleness.

RQ3 Duration: How long do stale recommendations linger
on suggestion lists?
Motivation: If most stale recommendations linger for
a short period, recommendation approaches need to
adapt to a dynamic list of reviewers who left the
project. If, on the other hand, reviewers linger in stale
recommendation lists for a long period, identifying a
stable set of impactful candidates will have a larger
effect. Thus, to guide future work, we study the extent
to which stale recommendations linger.
Results: Stale recommendations can still be suggested
up to 7.7 years after their departure, with a median time
of 7 months and 21 days. While the lingering duration
of top-3 reviewers increases over time, their proportion
in stale recommendations reduces. Approaches that
consider the recency of contributions (e.g., cHRev) re-
duce the number of stale recommendations, but are in-
effective when other factors like experience dominate.

Our results suggest that a periodic pruning of the top
stale reviewers may help existing approaches with staleness.
In industrial settings, such a CRR system could integrate
with personnel management systems to identify who left
the company; however, team reorganization and internal
movement of personnel may still present challenges [51]. To
address those challenges, we propose a mitigation strategy
to enhance CRR approaches with a separate time-bassed
contribution recency filter to remove stale reviewers from
the available developer pool, especially the top ones that
have been lingering for a long time. This strategy diminishes
stale recommendations by up to 92.16%, 92.39%, and 89.45%
for cHRev, Sofia, and WLRRec, respectively. Future work
could further improve this by improving the identification
of the top reviewers and forecasting stale reviewers.

2 RELATED WORK

Code Reviewer Recommendation (CRR). CRR approaches
have been proposed to suggest reviewers for change
sets [28], alleviating the burden of identifying a suit-
able reviewer [46], especially when potential reviewers are
busy [8]. Delays in identifying appropriate reviewers may

3

cause change sets to be abandoned or delay their integra-
tion [42].

The fundamental behaviour of CRR approaches is simi-
lar. Once a new change set is submitted, candidate reviewers
are ranked from most to least appropriate based on the
approach objective function. Approaches vary in their focus,
with some identifying reviewers who performed the task
in the past [49] and others striving to improve knowledge
distribution [32], reduce the reviewing workload for core
team members [1, 15], and minimize the risk of defects [21].

For example, Jiang et al. [19] proposed CoreDevRec, which
uses file paths as the input of their algorithm and recom-
mends reviewers most familiar with the change set based on
their previous reviews. Similarly, Thongtanunam et al. [47]
proposed RevFinder, which leverages previous reviews and
the similarity of file paths to recommend reviewers.

Approaches that recommend the familiar developers
with the change set typically generate a high reviewing
workload for these contributors, who are often the most se-
nior team members. To combat this, recent work has treated
reviewer recommendation as a multi-objective optimiza-
tion problem. For example, Chouchen et al. [6] proposed
WhoReview which strives to balance the selection of expert
reviewers with their workload.

The use of machine learning techniques have been ex-
plored in this domain. Strand et al. proposed Carrot—a
context-aware CRR based on LightFM1 algorithm [23]. Their
industrial survey showed that over 50% found the tool
helpful in assigning reviewers to change sets, but it did not
affect the time interval between submission and first review.

Traditionally, CRR approaches have been evaluated
based on their capacity to emulate historical data. However,
recent studies argued that these assessments struggle to
generate value in practical settings [13, 22] and are unlikely
to provide a suitable ground truth against which CRRs
should be benchmarked [8]. Thus, Mirsaeedi and Rigby [32]
proposed a simulation-based evaluation strategy in which
the impact of recommendations on objectives, such as the
risk of turnover-induced knowledge loss and the overall
expertise level of review task assignees, can be compared.

Several CRR approaches have attempted to enhance the
quality of recommendations by incorporating contributor
activity. cHRev [50], takes into account the recency of a
person’s contribution and the proportion of commits for
files involved in a change set. Jiang et al. [20] also proposed a
recommendation system for identifying suitable candidates
to comment on a change set. Like cHRev, their approach
incorporates a time-decaying factor for developers’ past
experiences, along with other metrics such as social inter-
actions and prior involvement in similar change sets.

In this study, our objective is to assess the impact of stale
recommendations on CRRs. To this end, we select five ap-
proaches for examination—one well-established traditional
algorithm (cHRev [50]) and two state-of-the-art CRR algo-
rithms that balance multiple objectives, such as the risk of
turnover-induced knowledge loss with the reviewing bur-
den imposed on the core team (Sofia [32]), and the expertise
of reviewers with current task backlogs (WLRRec [1]). Addi-
tionally, to consider both optimal and suboptimal CRRs that

1. https://github.com/lyst/lightfm

focus on a single outcome, we include the LearnRec [32] and
RetentionRec recommenders [32], which naı̈vely optimize for
creating learning opportunities for reviewers or maximize
the likelihood that the reviewer will continue to contribute
to the project, respectively. Given their objective functions,
we expect LearnRec and RetentionRec to generate high and
low proportions of stale recommendations, respectively.
Developer Turnover. Prior research on developer
turnover[5, 12, 17] has investigated its impact on software
projects. For example, Ton and Huckman [48] investigated
the impact of knowledge-intensive employee turnover on
operational performance. Mockus [33] studied the effect of
developer turnover on software defects. They observed that
the departure of developers was associated with an increase
in software defect rate. Lin et al. [27] explored turnover from
an individual-centric perspective, studying contributors
of five projects and their correlation with activities and
retention. Rigby et al. [40] used a Knowledge-at-Risk
(KaR) measure to quantify how susceptible industrial and
open-source systems are to turnover-induced knowledge
loss. Nassif and Robillard [36] replicated and extended
the concept to seven other projects and noticed a similar
knowledge loss probability distribution among all projects.

In addition, research has explored the impact of de-
veloper turnover, proposing identification methods based
on behavior. Avelino et al. [2] examined core developer
turnover’s effect on open-source projects, Miller et al. [31]
studied reasons for open-source contributor disengagement,
and Bao et al. [4] created a model to predict long-term
GitHub contributors. Quiet al. [37] looked into projects’
ability to attract new contributors, while Robillard [41]
analyzed how employee leaves impact software companies,
highlighting the significant disruptions caused by sudden
and temporary departures.
Developer Recommendation Tasks. While this study ex-
plores the concept of staleness within the context of CRRs, it
is a concern not only in CRRs, but also for software engineer-
ing tasks that involve developer recommendations, such as
bug triaging [14] and task recommendation [25]. Similar to
CRR, automated software engineering tasks usually involve
applying information retrieval and (deep) learning tech-
niques to incoming bug reports to recommend developers
with relevant expertise [30, 35]. While providing accurate
recommendations can considerably improve software main-
tenance, recommending inactive developers for such tasks
may slow down the software development lifecycle—an
issue that becomes particularly important for large open-
source projects due to their decentralized nature [51].

3 STUDY DESIGN

Figure 1 gives an overview of our experiment design for this
study. This section outlines the dataset preparation (Section
3.1), the studied CRR approaches (Section 3.4), and the data
processing procedures (Section 3.5).

3.1 Dataset Preparation
We conduct our research using a dataset derived from active
open-source projects. The dataset is sourced from prior
work [21]. While the dataset includes the information re-
quired for recommending reviewers, it lacks the reviewers’

https://github.com/lyst/lightfm

4

Generating Reviewer Recommendations

Mining Contributors LifecycleDataset Preparation

Extract Project
Review Invitations CRR

Approaches

Suggested
Reviewers

Project History

Produce Reviewer
Recommendations

for Each Change Set

......Kazemi et al.
Dataset

Data Processing

 Extract the
Lifecycle of
Contributors

Research
Questions

Preliminary
Study

Project
Dataset

Developer
Lifecycle

Fig. 1. The simplified overall architecture of study data analysis.

invitations for the change sets, which we require for our
study. Therefore, we augment the dataset by extracting the
required reviewer data using the GitHub API.2

Studied Dataset: The dataset includes data from the Roslyn,
Rust, and Kubernetes open-source projects. Rust is a popu-
lar high-level programming language with over 4.1K con-
tributors. Roslyn provides tools for the analysis of C# and
Visual Basic with 548 contributors and is backed by Mi-
crosoft.3 Initially developed by Google, Kubernetes is now
managed by over 3.5K contributors and aims to automate
operational tasks for container management. The selection
criteria for these project were to be active for over 4 years,
have more than 10K change sets with review rate of more
than 25 percent overall, and have more than 10K files.
Further details on these projects can be found in Table 1.

3.2 Mining Contributors Lifecycle

This component is responsible for determining when a
contributor joined and left a project. To this end, we query
the contribution logs in the extracted dataset to identify
each contributor’s last contribution to the project, signifying
when they ceased their involvement. To ensure accurate
developer identification in the logs, after mining the data
from GitHub we implement a cleaning and matching stage.
This stage involves preprocessing the extracted user records,
considering their names and emails, and removing spe-
cial characters and diacritics. Moreover, we calculate the
distance using the Damerau-Levenshtein algorithm [7] for
string matching with a tolerance of 1 to accommodate minor
user name and email variations. This helps with user identi-
fication and creates comprehensive profiles for developers.
We retain this information for our analysis (see Section 3.5).

3.3 Key Terms

To enhance the clarity of our methodology, we explicitly
define the key terms employed throughout this report.
These definitions are used for identifying contributors and
establishing the criteria for determining when a contributor
is considered to have departed from a project.
Contribution: To identify potential reviewers from a
project’s developer pool, we consider those who had pre-
vious contributions to the project. Thus, we need to pro-
vide a crisp definition of contribution in this paper. There
are multiple ways in which individuals can contribute to
the advancement of a project, including activities such as

2. https://docs.github.com/en/rest
3. https://devblogs.microsoft.com/visualstudio/introducing-the-

microsoft-roslyn-ctp/

TABLE 1
The details of the dataset used (built upon Kazemi et al. [21]) .

Name Files
Reviewed

Change
Sets

Developers Review
Invitations

Roslyn 12,313 8,646 469 1,546
Rust 12,472 17,499 2,720 128

Kubernetes 12,792 32,400 2,617 26,164

reviewing code and reporting bugs. Since end users can
submit bug reports, we elect to concentrate on the contri-
butions of code reviewers and change set authors in this
study. Furthermore, since the recommendation approaches
only consider developers for reviewing change sets, we only
consider those who reviewed or authored a change set in the
past.
Developer: Within the context of this study, a developer
refers to individuals who have authored a portion of the
code or participated in reviewing a Pull Request (PR). It
is crucial to acknowledge that while they are qualified to
review subsequent changes to their own code, not all are
actively involved in the review process. The term contributor
is thus synonymous with developer, as it aligns with the
definition of contribution established in this study.
Reviewer: This term refers to those reviewing a change set
to ensure that new changes do not introduce bugs, fulfill the
authors’ intent, and adhere to the standards of the reposi-
tory. Previous studies have shown that choosing the optimal
reviewer impacts the quality of the review process [29, 43].
Stale Reviewer: The identification of contributors who have
left a project has been explored in various studies using
different thresholds from a contributor’s latest contribution
in periods of 30, 60, 180 days, and even a year [18, 27, 44]. A
contributor is deemed stale at a given point in the project’s
history one day after they cease authoring or reviewing
Pull Requests (PRs) and do not make any subsequent con-
tributions in the project contribution history. We identify
when recommendations become stale by first compiling the
contributions of developers from the project history and
then determining their first and last contribution. Similar to
prior works [12, 27], we classify those who have contributed
within the last six months of the project’s available history
as available developers to ensure all stale reviewers have
been inactive for a minimum of six months. Subsequently,
we compare the generated CRRs for the studied approaches
against the activity lifecycle of developers to determine
which recommendations are stale.

In summary, we consider all the developers who have
made contributions before the change set submission as
potential reviewers and then apply the CRR approach,
using its objective function to prepare a set of reviewers
and recommend that they review the change set. Among
these recommended reviewers, some of them may not have
been actively engaged in the project development, i.e., stale
reviewers.

3.4 Generating Reviewer Recommendations
To generate CRRs that align with the state of the project at
the time of proposing each change set, we conduct a simula-
tion of the project’s development over time. This simulation

https://docs.github.com/en/rest
https://devblogs.microsoft.com/visualstudio/introducing-the-microsoft-roslyn-ctp/
https://devblogs.microsoft.com/visualstudio/introducing-the-microsoft-roslyn-ctp/

5

involved exclusively considering the data points available
before the change set was proposed. For every change set,
we identify the previous contributors and treat them as the
pool of potential reviewers. Subsequently, we feed this data
as the input of the CRR approach to reproduce the CRRs for
the change set, which are then stored for further analysis.
Studied CRR Approaches: To investigate the quality of
reviewer recommendations, we choose five CRR approaches
with various recommendation styles. Below, we briefly de-
scribe each approach and its selection criteria. Since it is
not feasible for one study to implement and evaluate all
the available CRRs, we chose five approaches that cover
different recommendation styles which are popular among
the CRRs approaches [20, 45].

LearnRec [32] solely focuses on mitigating the risk of
turnover-induced knowledge loss by promoting knowledge
sharing among team members. It recommends contributors
who are likely to learn the most from participating in the
review of a change set by estimating the familiarity of the
candidate with the modified files. LearnRec ranks candidates
in ascending order based on the complement of a heuristic,
which estimates how much the candidates know about
the modified files (i.e., 1 − ReviewerKnows). Even though
LearnRec is singular in its optimization focus and would
not reasonably be deployed in production, we include it
as a benchmark to which other CRR approaches can be
compared. Our hypothesis is that this approach will exhibit
the lowest resilience to stale recommendations because indi-
viduals who are making a one-time contribution to a project
are typically ranked as those who stand to learn the most
from a review [21, 32].

RetentionRec [32] suggests only Long Term Contributors
(LTC). While the former approach, LearnRec, is an extreme to
mitigate the risk of turnover knowledge-loss, the developers
who benefit the most from reviewing code may have little
to offer in terms of feedback to benefit the authors of
change sets. Moreover, they are highly likely to be one-
time contributors [21, 32]. As an extreme countermeasure,
the RetentionRec approach ranks candidates in descending
order according to their frequency and consistency of con-
tribution. The contribution ratio measures the proportion of
contributions made by a developer during a period, while
the consistency ratio measures the proportion of sub-periods
in which the developer was actively contributing to the
project. As developers become more consistent or active,
the RetentionRec approach is more likely to suggest them
as reviewers. Due to the characteristics of the objective
function, we expect this approach to exhibit the highest
resilience to stale recommendations; however, this tends
to overburden the core team since they have the highest
frequency and consistency of contributions.

cHRev [50] ranks potential reviewers for a change set
based on their previous reviews and the recency of their
contributions. To evaluate the suitability of developer D for
reviewing file F, cHRev uses the xFactor measure, which is
calculated as the sum of three terms: (1) the ratio of the
number of review comments made by D on file F to the
total number of review comments on F, (2) the ratio of the
number of workdays that D commented on reviews of F to
the total number of workdays for all reviewers of F, and
(3) the inverse of the difference in days between the most

recent day that D worked on F and the last date that F
has changed, plus one. CHRev calculates the xFactor for files
in the change set for potential reviewers and recommend
those with the highest xFactor. In this paper, we consider
cHRev as an example of a traditional CRR algorithm, which
are approaches that seek to match review suggestions with
historical review data [21].

Sofia [32] aims to balance multiple objectives, i.e., the
knowledge distribution among active team members and
the expertise of reviewers assigned to tasks. Suppose the
number of knowledgeable developers in the project for any
file in the change set R is N . When N is greater than a risk
tolerance threshold (N = 2 in the original paper [32]), Sofia
uses cHRev to rank recommendations by their expertise.
Conversely, when N is below the risk tolerance threshold
(i.e., there are fewer than N developers in the project that
have knowledge of the file) Sofia uses the combination of
RetentionRec and LearnRec to rank LTC candidates who can
learn the most by reviewing R.

WLRRec (WorkLoad-aware Reviewer Recommenda-
tion) [1] takes into account the workload of potential review-
ers when ranking candidates for a change set as well their
social interactions. The idea is that if a reviewer is already
very busy, they are less likely to agree to take on another
task. When ranking candidates, WLRRec considers their past
rate of accepted review invitations (review participation
rate), the assigned reviews that candidates still have pend-
ing (remaining reviews), and the expertise and experience
that candidates have with respect to the code under review
(ownership and experience). We study WLRRec because it is
a state-of-the-art approach that does not place importance
on the recency of the candidate reviewer contributions. This
attribute is desirable to help us comprehend a broad range
of CRR characteristics in this study.

3.5 Data Processing

In this component, we address the research questions out-
lined in Section 1. Our investigation begins with a prelimi-
nary assessment of the prevalence of stale recommendations
in CRR systems. If noticeable prevalence is observed, we
will proceed to conduct a more in-depth analysis of the data
collected in the previous stage.

We rely on historical data from Git repositories to pro-
duce CRRs. Further information on the history of each
project can be found in Table 1. The historical data from each
studied project is stratified into quarterly (three-month) in-
tervals and CRR performance is evaluated for each interval.
This approach aligns with previous studies on knowledge
turnover [32, 36, 40], which also chose quarterly intervals.
The rationale behind this choice is that it provides a balance:
quarterly intervals are long enough to capture trends and
patterns effectively, yet not so long that crucial details are
obscured. Additionally, smaller time-frames have shown to
be more susceptible to extreme events when compared to
their respective means [36].

To confirm that code review was consistently carried out,
we focus on contiguous periods where more than 80% of
integrated change sets were reviewed. Figure 2 shows the
quarterly review rates for each project.

6

0 5 10 15 20 25 30 35
Period

0

20

40

60

80

100

Re
vi

ew
 R

at
e

(%
)

project
Roslyn
Rust
Kubernetes

Fig. 2. Quarterly review rates of Rust, Roslyn and Kubernetes projects.

0 1 2 3 4 5 6 7 8

10

20

Sh
ar

e
of

 S
ta

le

 R
ec

om
m

en
da

tio
n(

%
) Reviewer Set Length=1

Roslyn

0 1 2 3 4 5 6 7 8

10

20

Sh
ar

e
of

 S
ta

le

 R
ec

om
m

en
da

tio
n(

%
) Reviewer Set Length=2

0 1 2 3 4 5 6 7 8
Period

10

20

Sh
ar

e
of

 S
ta

le

 R
ec

om
m

en
da

tio
n(

%
) Reviewer Set Length=3

cHRev
Sofia
WLRRec

Fig. 3. Share of stale recommendations over time for studied projects.
Rows indicate variations for reviewer set sizes ranging from 1 to 3.

4 PRELIMINARY STUDY

Prior studies have shown that developers complain about
stale recommendations [22, 51]; however, the prevalence of
and reasons for stale recommendations remain unexplored.
Therefore, we conduct a preliminary investigation of stale
recommendations in CRR approaches.
Approach. To gauge the potential impact of stale recom-
mendations, we study the rate at which incorrect recom-
mendations are stale. We apply the studied CRR approaches
to produce reviewer recommendations at several points in
time. Then, we identify incorrect recommendations, i.e.,
recommended reviewers who did not review the code. Next,
we measure the prevalence of stale recommendations in
incorrect ones, and the ratio of all change sets (i.e., PRs)
that have at least one stale recommendation since they can
potentially be impacted by stale recommendations.
Results. Stale recommendations frequently account for a con-
siderable proportion of incorrect recommendations with an av-
erage of 12.59% of incorrect recommendations for non-naı̈ve
approaches [21], i.e., CRR approaches that optimize the recom-
mendation for multiple objectives such as cHRev, Sofia, and
WLRRec. Specifically, the average proportion of stale rec-
ommendations to the incorrect ones over reviewer set sizes
of one to three for LearnRec, RetentionRec, cHRev, Sofia,
and WLRRec is 97.13%, 0%, 12.03%, 8.33%, and 16.44%,
respectively, with the median share of 100%, 0%, 10.28%,
6.63%, and 14.73% across all the studied periods. These

proportions indicate that for all studied approaches, ex-
cept for RetentionRec, stale recommendations account for
a non-negligible proportion of incorrect recommendations.
By exclusively suggesting contributors who exhibit a higher
likelihood of remaining engaged in the project, RetentionRec
surpasses other existing CRR methods in terms of mitigating
the issue of stale recommendations. However, Retention-
Rec’s superiority in this aspect comes at the cost of imposing
a significant workload on core developers, rendering it
impractical [21, 32].

The clarity of the impact of stale recommendations com-
pared to other types of incorrect recommendations war-
rants a closer inspection. Prior research indicates that the
reviewers of a change set are not necessarily the optimal
choices [28], whereas those who are recommended but
have not conducted the review often possess the necessary
qualifications to conduct the review [13]. Hence, it is not
straightforward to identify the truly incorrect recommen-
dations among the produced reviewer recommendations.
Stale recommendations, however, are unequivocally incor-
rect—they are unavailable to conduct the review. Further-
more, in specific periods (e.g. last periods of Kubernetes
project), the proportion of stale recommendations becomes
considerable, likely a factor that contributes to the negative
feedback that was observed in previous studies [22, 51].
Therefore, mitigating stale recommendations directly en-
hances the performance of CRR approaches and improves
the experience of teams that use them.

The size of the recommendation set has little influence on
the proportion of stale recommendations, whereas the proportions
vary substantially from one project to another. Figure 3 shows
the proportion of incorrect recommendations that are stale
over time for the three studied projects for reviewer set
sizes from one to three. Each line shows the proportion
of stale recommendations that are not influenced by the
recommendation set size, whereas the project and CRR
approach affect their proportion. While initial observations
suggest reviewer set size does not influence the prevalence
of stale reviewers, further analysis of potentially affected
change sets indicates otherwise. Reviewer set size impacts
the extent of affected change sets–a more important measure
of stale reviewers’ potential effect. Additionally, the figure
indicates that project-specific factors, such as knowledge
turnover rates, have a substantial impact on stale reviewer
rates.

A considerable proportion of change sets has at least one
stale recommendation. Our analysis reveals that up to 33.52%,
55.47%, and 69.18% of change sets include at least one stale
recommendation when recommendation sets are of length
1, 2, and 3, respectively, with corresponding medians of
6.34%, 15.01%, and 23.36%. Figure 4 shows the proportion
of change sets that include stale recommendations (Y-axis)
over time (X-axis) across the studied projects (horizontal
grid) with recommendation lists of length 3. This figure
shows that the share of influenced change sets by stale
recommendations tends to grow over time in all settings,
except in the Rust project where WLRRec is applied. This
difference is due to Rust’s lack of review invitation records.
While this might occur in real-world projects for various rea-
sons, such as using alternative communication channels for
review requests or allowing reviewers to self-select change

7

0 1 2 3 4 5 6 7 8 9
Period

0

20

40

60
Af

fe
ct

ed
 C

ha
ng

e
Se

ts
 (%

) Roslyn

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Period

0

20

40

Rust

0 1 2 3 4 5 6 7 8 9
Period

0

20

40

60

Reviewer Set Length=3
Kubernetes

Three Reviewers
Two Reviewers
One Reviewer

Fig. 4. Prevalence of potentially impacted change sets by stale recommendations for cHRev (left), Sofia (middle), and WLRRec (right) for each
period (percentage).

sets to review, we consider it an interesting application of
WLRRec to such projects rather than a threat to the validity
of WLRRec results for Rust. Nevertheless, this lack of infor-
mation causes a divergence between Rust and other projects
when using WLRRec, which takes into account the accepted
review invitation rate. Since the accepted invitation data is
not available on Rust’s GitHub, WLRRec does not perform
as well. However, over time, other factors in the WLRRec
algorithm, such as Reviewing Experience and Familiarity,
compensate for this limitation. The results for reviewer set
lengths of one to three can be found in our online appendix.4

Stale recommendations represent a considerable and persistent
issue within CRR systems, as evidenced by the median percent-
age of change sets containing at least one stale recommendation,
which ranges from 6.34%, 15.01%, to 23.36% for reviewer set
lengths of one, two, and three, respectively. This trend not only
underscores their prevalence but also suggests an increasing
tendency over time, highlighting the shortcomings of widely-
used CRR systems with this regard. A deeper investigation is
warranted to better characterize their occurrences to guide the
development of mitigation approaches.

5 RQ1: THE PREVALENCE OF STALE REVIEWERS
IN CRRS

In this section, we study the prevalence of stale recommen-
dations that are produced by our studied approaches.
Approach. We evaluate the recommendations for studied
approaches over the quarterly periods with recommenda-
tion lists of lengths one, two, and three. For each period,
we compute the share of stale recommendations over all the
incorrect recommendations. To assess the quality of studied
approaches, we propose the Recommender Adaptability Score
(RAS) measure, which gauges the approach’s ability to
respond to developer turnover and consider only active
contributors:

RAS(CRR) =
AUC(CRRLearnRec)− AUC(CRR)

AUC(CRRLearnRec)− AUC(CRRRetentionRec))
(1)

AUC refers to the Area Under the Curve that plots the pro-
portion of stale recommendations against time (i.e., studied
periods). We expect LearnRec and RetentionRec to produce
the worst and best performance (i.e., the largest and smallest
possible AUC), respectively. Therefore, the RAS calculates
how much closer the CRR is to the optimal (best) per-
formance than to the worst performance. The RAS ranges
between 0–1; higher values indicate better performance.

4. https://zenodo.org/records/10971688

Results. Figure 5 shows the proportion of stale recommen-
dations (Y axis) over time (X axis) across the studied projects
(Horizontal grid) for reviewer set length of one. The results
when the length of the recommendation list is set to two
and three can be found in our online appendix.4

Stale recommendations account for up to 33.33% of all sug-
gested reviewers with a median share of 8.3% of all of the recom-
mendations. Figure 5 largely confirms previously reported
developer complaints [22], i.e., that CRR approaches often
suggest stale reviewers. CRR approaches, configuration set-
tings, and periods have a considerable effect since Figure 5
also shows that the proportion of stale recommendations
can drop to as low as 0.33%; however, even a minimal
presence of stale recommendations—especially those in-
volving stale reviewers who have long since departed from
the project—can erode developers’ trust in CRR systems,
thereby affecting their usability. Additionally, reducing the
incidences of stale recommendations, even if they constitute
a small proportion of the recommendations at times, would
certainly enhance the rate of correct recommendations,
unlike other types of recommendations which may have
ambiguous implications [8, 13].

Considering the recency of candidate contributions enhances
the quality of CRRs. We find approaches that consider the
recency of contributions outperform WLRRec, a CRR ap-
proach that does not consider recency. Figure 5 indicates
that RetentionRec is the best CRR approach with no stale
recommendations, while LearnRec is the worst, providing
stale recommendations in 80.39% of all the studied periods.
The poor performance of LearnRec in recommending active
contributors can be attributed to its prioritization of contrib-
utors with the greatest learning opportunity. This naı̈ve pri-
oritization can lead to sizable knowledge loss [21, 32]. Mean-
while, RetentionRec prioritizes the most active contributors
and is thus least prone to making stale recommendations;
however, RetentionRec tends to overburden core developers
(by design).

The performance of Sofia and cHRev—CRR approaches
intended for actual deployment—falls in between these two
extremes, with Sofia exhibiting a slight advantage over
cHRev. We suspect that this is due to Sofia’s use of Reten-
tionRec to mitigate the risk of knowledge loss. Both Sofia
and cHRev consider recent contributions of candidates. In
contrast, WLRRec employs a combination of candidates’
prior interactions, prior accepted review rate, experience,
and workload to rank reviewer candidates without consid-
ering the recency of their contributions.

Table 2 shows the RAS scores of the studied approaches.
LearnRec and RetentionRec are not included in the table,
as they are the benchmarks used to compare other CRR

https://zenodo.org/records/10971688

8

0 1 2 3 4 5 6 7 8
Period

0

25

50

75

100

St
al

e
Re

co
m

m
en

da
tio

ns
(%

)
Roslyn

0 2 4 6 8 10 12 14
Period

Rust

0 1 2 3 4 5 6 7 8
Period

Reviewer set Length = 1
Kubernetes

LearnRec RetentionRec cHRev Sofia WLRRec

Fig. 5. The proportions of stale to all recommendations (y-axis). The period numbers are normalized, with zero representing the oldest period.

TABLE 2
Measured Recommender Adaptability Score (RAS) values for each setting. A higher RAS indicates better adaptability to developer turnover.

Project Roslyn Rust Kubernetes

Approach
Reviewer set length 1 2 3 1 2 3 1 2 3

cHRev 0.9521 0.9448 0.9349 0.9356 0.9065 0.8902 0.9188 0.8945 0.8783
Sofia 0.9647 0.9595 0.9540 0.9632 0.9428 0.9313 0.9336 0.9135 0.8996

WLRRec 0.8280 0.8442 0.8466 0.8220 0.8041 0.8588 0.8757 0.8560 0.8676

0 2 4 6 8 10 12 14
Period

0

5

10

15

Ex
pe

rti
se

 Tu
rn

ov
er

 R
at

e
(%

)

Roslyn Rust Kubernetes

Fig. 6. Developer expertise turnover rate for the studied periods over
time. We consider the first studied period to be zero in all projects.

approaches (worst and best performers, respectively). The
median RAS scores of 0.9187, 0.9427, and 0.8466 for cHRev,
Sofia, and WLRRec, respectively, suggest that they perform
more similarly to RetentionRec (optimal) than LearnRec
(worst). Moreover, the RAS obtained from Table 2 for cHRev,
Sofia, and WLRRec exhibit a standard deviation of 0.0262,
0.0228, and 0.0181, respectively. This suggests that Sofia and
cHRev are relatively more susceptible to variations in the
reviewer set size and project, as compared to WLRRec.

Abrupt changes in developer expertise turnover led to a de-
layed impact on the staleness rate of CRRs, a trend observed across
all projects analyzed. To explore further, Figure 6 plots the
expertise turnover rate of the studied projects over quarterly
periods. The figure plots the ratio of previous contributions
from developers who stopped contributing to the project
during each period against the total prior contributions from
all developers who were active by the end of the period. Pe-
riod numbers are normalized to begin from zero to simplify
comparisons across projects. For example, in the Roslyn
project, there is a decline in the turnover rate between
periods 2 and 3, followed by a steady increase until the end
of the timeframe with small peaks at periods 4 and 6, as
depicted in Figure 6. In this case, we observe a comparable
trend in the proportion of stale recommendations, with a
gentler slope for both segments in Figure 5. The figure also
shows two small peaks at periods 5 and 8 with a delay
from the expertise turnover peaks. The fluctuation of the

RAS scores for one CRR approach over different projects
also confirms the resiliency of the CRR approaches against
developer expertise turnover. For Kubernetes and Roslyn,
the developer expertise turnover rate in Figure 6 shows an
upward trend with a similar pattern of peaks occurring with
1 or 2 periods of delay in Figure 5. For the Rust project,
however, while the upward slope for the share of stale
recommendations is not as steep as the expertise turnover
rate, we can still observe the impact of periods that have
peak turnover ratio, such as periods 9 and 13, in Figure 5
with 1–2 periods of delay in periods 11–12 and 14–15. The
WLRRec approach exhibits weaker adherence to the trend.
We suspect this is because the Rust project does not keep
any record of review invitations (i.e., developers invited to
review change sets). This lack of data profoundly impacts
the quality of recommendations generated by WLRRec since
review invitations are part of its objective function.

Stale recommendations account for a considerable portion of the
suggestions provided by CRR approaches, accounting for up to
33.33% of the recommendations with a median share of 8.3%
of all of the recommendations that were produced. Although
considering the recency of the candidate’s contributions can
partially mitigate the negative impact of stale recommendations,
the performance of cHRev concerning stale recommendations
suggests that solely considering this metric cannot eliminate
this type of incorrect recommendation.

6 RQ2: THE DISTRIBUTION OF STALE RECOM-
MENDATIONS ACROSS REVIEWERS

In this section, we study the distribution of stale recom-
mendations across the reviewers of the studied projects.
Approach. To study the distribution of stale recommenda-
tions, we calculate the proportion of stale recommendations
accumulated by each reviewer quarterly. We aim to analyze
and justify our observations to identify the most influential
factors contributing to stale recommendations.
Results. Figure 7 shows the proportion of stale recom-
mendations accumulated by the top-3 most recommended
reviewers to all stale recommendations for each quarterly

9

0 1 2 3 4 5 6 7 8 9
Period

0

20

40

60

80

100
Pr

op
or

tio
n

of
 a

ll
st

al
e

re
co

m
m

en
da

tio
ns

 (%
)

Roslyn

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Period

0

10

20

30

40

50

60

Rust

0 1 2 3 4 5 6 7 8 9
Period

0

10

20

30

40

50

60
Kubernetes

 Rank of
Stale Reviewers

Rank #3
Rank #2
Rank #1

Fig. 7. The share of top-3 reviewers’ recommendations of all stale recommendations for cHRev (leftmost bar), Sofia (middle bar), and WLRRec
(right bar) for studied quarterly periods with reviewer set length of one.

0 10 20 30 40 50
Number of reviewers that account for

 the largest number of stale recommendations

20

40

60

80

100

Pr
op

or
tio

n
of

 a
ll

st
al

e
re

co
m

m
en

da
tio

ns
 (%

)

Reviewer set Length
1
2
3

Fig. 8. Change of top-N reviewers’ share in stale
recommendations with value of N when Sofia is
applied to Roslyn (reviewer set lengths 1-3).

Lingering time (Days)

N
o
rm

a
li
z
e
d
 P

e
ri

o
d

cHRev So�a WLRRec

Fig. 9. The distribution of the duration of stale recommendations (in days) over quarterly periods
for the studied projects. Only the first nine periods are drawn.

period when the recommendation list length is set to one.
We normalize study period numbers to begin from zero for
easier comparisons. Results for recommendation list lengths
two and three are in the online appendix.4

A small number of reviewers account for a substantial pro-
portion of the stale recommendations. Figure 7 shows that in
periods 2 and 3 of the Roslyn project, 100% of the stale
recommendations are in reference to three reviewers. On
the other hand, Figure 7 also shows that the proportion of
stale recommendations accumulated by the top-3 reviewers
can drop as low as 0.072 (i.e., in normalized period eight of
the Kubernetes project). Moreover, in 15.31% of evaluated
quarterly periods, over half of the stale recommendations
are accumulated by the top-3 reviewers.

Figure 8 shows that a few reviewers constitute most of
the stale recommendations in the periods of the Roslyn
project when Sofia is applied. To enhance the quality of
CRRs, these reviewers can be excluded from the candidate
list. Similar trends were observed in other projects.4

The proportion of stale recommendations that the top reviewers
accumulate tends to decrease as projects age. Figure 7 shows
that the proportion of stale recommendations for the top-
3 reviewers diminishes over time. For instance, when Sofia
is applied, this proportion decreases from 75.00%, 64.29%,
and 40.00% in period 0 to 55.26%, 38.89%, and 22.91% in
the final studied periods of Roslyn, Rust, and Kubernetes,
respectively. Moreover, the periods in between show a de-
creasing trend.

CRR approaches frequently recommend a small number of
reviewers who stopped contributing to the project based on their
prior contributions. Although the proportion of such reviewers
decreases over time as experienced contributors leave the project,
removing them has the potential to considerably enhance the
perceived quality of the CRRs.

7 RQ3: THE LINGERING EFFECT OF STALE REC-
OMMENDATIONS

In this section, we study how long contributors who left a
project linger in recommendation lists.
Approach. To calculate the duration of a lingering stale
recommendation, we measure the time between the last
contribution and subsequent recommendations of the re-
viewer. We conduct experiments for studied projects, and
assess the consistency and impact of each variable on the
duration of lingering stale recommendations. Our findings
exclude the LearnRec and RetentionRec approaches since
they are considered baseline approaches and are unlikely to
be adopted in practice.
Results. There exist reviewers who persist in the recommendation
list of CRR approaches for up to 7.7 years, with a median time
of 7 months and 21 days. Figure 9 shows the distribution
of the elapsed time (in days) between the departure of
reviewers and their subsequent stale recommendations for
all the recommendations over specific quarterly periods.
Among the studied projects, the upper bounds of the dis-
tributions tend to increase. This suggests that the evaluated
CRR approaches do not effectively prune their candidate
pool over time to eliminate stale recommendations, even
though some consider the recency of their contributions.
While some may argue that the responsibility of identifying

10

0 1 2 3 4 5 6 7 8
Period

0

200

400

600

800
Lin

ge
rin

g
Ti
m
e
(d
ay

s)
Roslyn

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Period

0

200

400

600

800

1000

1200

1400

Rust

0 1 2 3 4 5 6 7 8
Period

0

200

400

600

800

Kubernetes
cHRev
Sofia
WLRRec

Fig. 10. The distribution of lingering duration for the top-3 reviewers over quarterly periods.

potential reviewers lies with those who are familiar with
the current team, this task becomes increasingly challenging
as teams grow, particularly in the context of open-source
projects or when developers switch teams internally. For
instance, we encountered cases in the Roslyn project where
developers moved from Roslyn to Office 365 and other
teams within Microsoft. These complexities and barriers
indicate that CRR approaches could be used to effectively
prune the pool of potential reviewers.

Indeed, contributors who have left a project may be
recommended by CRR approaches long after they have
left the project. For example, PR #65216 of the Kubernetes
project, both cHRev and Sofia recommend developer M
when the reviewing set length is set to three. Developer
M both joined and left the project in 2014. Nevertheless,
upon submission of PR #65216 (more than 3.5 years later),
M was recommended as a reviewer due to the extensive
contributions to the file ”pkg/util/iptables/iptables.go”.

In another example (Roslyn PR#33501) cHRev recom-
mends three reviewers, including developer H, who par-
ticipated in Roslyn’s code development from June 2014 to
September 2018. In determining H’s score, contributions and
workdays each equally account for 30% of cHRev’s score.
The remaining 40% of the score weight is determined by the
recency of the contribution. Meanwhile, Sofia deems this
change set at a high risk of turnover-induced knowledge
loss and recommends candidates who are actively involved
in the project’s development. Thus, Sofia does not make any
stale recommendations for this change set. The WLRRec’s
recommendation for this PR is primarily influenced by
previous interactions with the code’s author and, as such,
it only makes one stale recommendation when the length of
the recommendation list is set to three.

The lingering attribute of stale recommendations differs
among CRR approaches, influenced by their objective functions.
CHRev shows the highest staleness (median staleness of
245 to 279 days) across the projects under scrutiny, with
Sofia performing slightly better (median staleness of 201 to
258 days). WLRRec presents the lowest median staleness in
Roslyn and Kubernetes (160 and 203 days), but the highest
in Rust (371 days). We suspect that these differences are
explained by the focus of cHRev on maximizing expertise,
which can overshadow the recency, leading to stale recom-
mendations. Sofia is similar to cHRev, but includes an ad-
justment for knowledge turnover risks, and uses Retention-
Rec to recommend active reviewers in high-risk changes.
By considering social dynamics and reviewer request re-
sponsiveness, WLRRec provides a more balanced recom-
mendation distribution in the Roslyn and Rust project.

Its notably poorer performance in Rust (371 days median
staleness) may be attributed to the lack of review request
responsiveness records, which highlights the importance of
this feature in its objective function as a countermeasure for
lingering stale recommendations.

As projects age, CRR approaches tend to accrue a larger can-
didate list without pruning those who have left the project. This
exacerbates the impact of top reviewers who left a project
many periods ago. CRR approaches with high reliance on
the expertise of the candidates (e.g., cHRev) are especially
prone to this problem. As Figure 9 suggests, some of the
reviewers may remain on the candidate list for a long time.
These developers are most likely stuck in the candidate list
due to their experience and prior contributions to important
modules, which may degrade the performance of CRR ap-
proaches over time. Figure 10 shows this distribution for the
top-3 reviewers over quarterly periods when the reviewer
set length is set to one and confirms the increasing tendency
of the longevity of the lingering duration over time. The
results for reviewer set lengths two and three also follow
the same trend.4

Sudden declines in the staleness of the top-3 reviewers are
linked to increased release frequencies paired with a surge in
new file additions, followed by high developer expertise turnover.
This pattern is evident in periods 15 and 16 for Roslyn
and 12 and 13 for Kubernetes, as shown in Figure 7. Our
analysis indicates that these declines in the lingering days
of the top-3 stale reviewers occur after periods marked
by heightened release activities, new file additions, and
developer turnover. New releases are often accompanied by
a spike in bugs or feature requests that are related to newly
added files, necessitating the involvement of developers
who are familiar with those files. Suppose these developers
have recently left the project. In that case, they are likely
to be recommended, thereby reducing the lingering days of
the top-3 stale reviewers by suggesting those who worked
on those releases. For Roslyn, this effect can be observed
with an increase in new files in PRs and a peak in release
rates between periods 12 to 15. This is coupled with an
increase in developer turnover that peaks during periods 14
and 16. Consequently, a noticeable drop for top-3 developer
lingering days occurs between periods 15 to 16. In Kuber-
netes, the drop occurs between periods 12 and 13, triggered
by a spike in developer turnover in period 11 and a high
release rate compared to the median rate of all releases from
periods 9 to 12, with an increase in new file additions in
PRs from periods 8 to 11. The Rust project does not exhibit
such concurrent events; hence, there is no similar decline in
lingering days for its top-3 stale reviewers. Further details

11

and analyses are available in our online appendix.4

Comparing our latest findings with our previous re-
search question shows that while the proportion of top-
3 reviewers may decrease over time, their residual effect
tends to increase. This highlights the need to remove the top
reviewers who have left the project from candidate pools to
address the lingering effect present in CRR approaches.

CRR approaches make stale recommendations frequently, even
years after contributors have left a project. While the percentage
of the top reviewers of all the stale recommendations may de-
crease over time, their residual effect tends to increase. Regular
pruning of the candidate pool could provide a reliable way to
improve the perceived quality of reviewer recommendations.

8 MITIGATION PLAN

Based on our findings, we propose to incorporate the re-
cency of developer contributions and filter out stale re-
viewers as a new stage for CRR approaches. This filter can
ensure that the recency factor is not overshadowed by other
variables, and can integrate with existing CRR approaches.
Approach. We propose a time-based filtering stage that
excludes developers from the recommendation list if
they have not contributed within a specified time-
frame (PContributionGap). We assess the effect of different
PContributionGap durations—one year, six months, three
months, and one month—on the performance of each ap-
proach to reveal the potential impact of applying the pro-
posed factor and its effectiveness on studied approaches
and projects. To this end, we apply the filter across these
intervals and measure the metrics below:
Staleness Reduction Ratio (SRR) quantifies the improvement
in recommendation staleness of a CRR approach upon inte-
grating our time-based filter. SRR is calculated as the relative
increase in the proportion of all the recommendations:

SRR =
SSRNo Filter − SSRTime-based Filter

SSRNo Filter
(2)

SSRNo Filter and SSRTime-based Filter represent the original stal-
eness without, and with the filter applied, respectively.
Developers’ Work Load Ratio (DWLR), inspired by prior
work [32], evaluates the potential workload on non-stale
recommended reviewers should they accept all recommen-
dations. Workload is estimated using the reviewer’s share
of total review tasks.
F1-Score assesses the performance of the proposed filter
in predicting stale recommendations. In this context, true
positives are correctly replaced stale recommendations, false
positives are non-stale recommendations mistakenly re-
placed, true negatives are non-stale recommendations ac-
curately left unchanged, and false negatives are stale rec-
ommendations that were not identified and thus remained.
Present Reviewers Expertise (PRE) assesses the impact of the
time-based filter on the expertise level of non-stale rec-
ommended reviewers. For each PR, after excluding stale
reviewers, we measure the expertise of remaining recom-
mended reviewers based on their prior contributions to
the files involved in the PR. Expertise is defined following
the formulation of Mirsaeedi and Rigby [32], i.e., focusing

on the proportion of modified files which previously con-
tributed to by the reviewer before the submission of the PR.

Results. SRR decreased substantially, with reductions ranging
from 21.44% to 92.16% for cHRev, 22.42% to 92.39% for Sofia,
and 21.62% to 89.45% for WLRRec. Remarkably, this filter
also enabled LearnRec, a naı̈ve baseline approach, to reduce
stale recommendation rates by 19.93% to 92.48%. Thus, the
time-based filter successfully achieves its primary goal of
substantially lowering stale recommendations.

Reducing PContributionGap enhances SRR but restricts the
pool of available reviewers, thereby increasing the workload for
active contributors. As anticipated, narrowing the interval
for recent contributions can exclude active contributors,
potentially increasing the workload for other develop-
ers. The median DWLR for the top-3 most recommended
non-stale reviewers across studied periods increases with
shorter PContributionGap intervals—8.33%–13.33% for 1 year,
9.69%–15% for 6 months, 11.11%–16.67% for 3 months, and
13.41%–19.14% for 1 month, compared to 6.59%–12.29%
without the filter. This trend highlights the trade-off in
setting PContributionGap values for the time-based filter.

The time-based filter considerably improves CRR approaches
that overlook contribution recency or seek recommendation di-
versity, with F1-Scores ranging from 0.0254-0.1894 for cHRev,
0.0196-0.1560 for Sofia, and 0.2611-0.3587 for WLRRec. The
time-based filter excels in contexts with higher stale recom-
mendation rates. For cHRev and Sofia, the high precision
shows that the time-based filter effectively identifies long
standing stale reviewers, but struggles with recent stale
ones, hindering their recall due to low rates of stale rec-
ommendations. In contrast, WLRRec suffers from a lower
precision, but enjoys a higher recall, due to its higher rate
of stale recommendations. LearnRec benefits across both
metrics, indicating the filter’s broad applicability for this
baseline approach.

Applying the proposed filter to CRR approaches maintains or
improves the expertise of non-stale recommended reviewers in our
studied cases. The median PRE by cHRev and Sofia remains
unchanged, while their mean expertise increases slightly,
ranging from 0.73%–2.44% for cHRev and 0.70%–2.30% for
Sofia. Conversely, WLRRec shows a notable median PRE
improvement of 16.66%–40%, with mean expertise rising
by 3.32%–10.64%. This enhancement results from the filter’s
exclusion of stale reviewers, thus increasing the likelihood
of selecting reviewers with relevant expertise. Further anal-
ysis with the Wilcoxon signed-rank test shows significant
changes in the distribution of PRE across settings, except
for WLRRec over a 1-year interval in Roslyn for reviewer
sets one and two, and Kubernetes for set three, highlight-
ing significant impact of the time-based filter on reviewer
selection. WLRRec’s behavior over a 1-year interval is likely
linked to stale recommendations from reviewers unfamiliar
with modified files but who have recent interactions with
the author and a high review invitation responsiveness. The
recency of these interactions means the 1-year filter has little
effect on these recommendations.

Detailed measurements for each experiment are pro-
vided in our online appendix for further reference.4

12

Filtering out inactive developers does not compromise recom-
mendation quality; it actually enhances the expertise of the
available recommended reviewers, with median improvements of
PRE ranging from 0.73% to 10.64% across studied approaches.
However, it may impose an additional workload on active
reviewers. Thus, selecting an optimal cut-off interval is essen-
tial to minimize stale recommendations without overburdening
developers by excluding too many potential reviewers.

9 THREATS TO VALIDITY

Construct Validity. In this study, we explore stale recom-
mendations in CRR approaches, defining staleness as the
interval between a developer’s last contribution and subse-
quent recommendations. Because exact departure times are
not usually documented, we should estimate the developer
departure. We approximate the developer departure as one
day after their last contribution if there has been no activity
for at least 180 days. While this method may threaten the
construct validity of our study, it is a widely accepted
approximation in prior research [18, 27, 44].
Internal Validity. Contributors labelled as stale reviewers
may be only taking a temporary hiatus. The last two quar-
terly periods are removed from the analysis to mitigate this
threat, i.e., the shortest period of absence that will cause
us to label a reviewer as stale is six months. We may also
mislabel a recommendation as stale if it occurs shortly after
the reviewer’s last contribution, even though they remain
active. However, we find that such instances are rare. In the
Roslyn project, stale recommendations for reviewers who
departed within one day, one week, and one month of their
last contribution comprised only 0.38%, 2.26%, and 7.94% of
all stale reviewers, respectively. In Rust, the corresponding
percentages were 0.32%, 2.17%, and 7.7%, and in Kuber-
netes, 0.37%, 3.13%, and 10.89%, indicating that these cases
represent a small proportion of all stale recommendations.
External Validity. Although we study five different CRR
approaches, the outcome of our analysis may not gener-
alize to all settings. However, our findings highlight the
degree to which current approaches are susceptible to stale
recommendations and their characteristics for three studied
projects of varying scales and domains. Nevertheless, repli-
cation of the study in other contexts may prove fruitful.

10 CONCLUSIONS AND LESSONS LEARNED

CRR approaches have been criticized for producing unac-
tionable recommendations [22, 51]. Stale recommendations
(i.e., recommended reviewers who no longer contribute to
the project) are a concrete type of incorrect recommenda-
tions that hinder CRR performance and erode developer
trust, especially when the recommended reviewer has long
abandoned the project. Since stale reviewers can no longer
effectively contribute to the project, they are truly incor-
rect recommendations, providing a unique opportunity for
improvement. Therefore,in this paper, we examine three
projects using five different CRR approaches to understand
their nature. Our investigation focuses on the prevalence
of these recommendations (Section 5), the distribution of
stale reviewers (Section 6), and the duration for which stale
reviewers continue to appear in recommendations (Section

7). From our findings, we derive the following actionable
insights for both practitioners and developers of CRR tools:
The effect of stale recommendations is particularly sub-
stantial when experienced developers leave, as the pro-
portion of stale recommendations among all CRRs is
directly influenced by the rate of expertise turnover (as
shown in RQ1). Consequently, for projects facing an exodus
of experienced developers, we advise (1) employing CRR
approaches that emphasize the recent contributions of re-
viewers, such as Sofia; and (2) whenever feasible, tuning the
hyperparameters of CRR systems to weigh the contribution
recency more prominently.
Our findings suggest that the recency of developer ac-
tivities should be incorporated as a stage before recom-
mendations are generated. Doing so can mitigate the pre-
dominance of other factors, such as developer expertise, that
may overshadow the recency of developer contributions. We
observe a positive effect in approaches like cHRev and Sofia,
where considering developer recency as a separate prepara-
tory stage reduces the likelihood of stale recommendations
by 19.93%-92.48%, depending on the cut-off parameter of
the filter, and the project and CRR approach under scrutiny.
Identifying and replacing frequently recommended stale
reviewers are crucial. Throughout our study, we noted
instances where pinpointing the top-3 stale reviewers and
substituting them with active developers reduces incidences
of stale recommendations by up to 22.10% overall, with
medians over the studied periods of 37.16%, 32.62%, 17.01%
for the cHRev, Sofia, and WLRRec approaches, respectively.
Therefore, identifying frequently recommended stale re-
viewers and removing them from the pool of available de-
velopers can already alleviate the general issue of staleness.
Implementing a threshold for the latest reviewer con-
tribution can help mitigate the issue. Our analysis re-
veals that CRR approaches like cHRev, Sofia, WLRRec, and
LearnRec allow stale reviewers to persist over extended
periods of time. This trend worsens as projects mature,
as evidenced by the increasing distribution of lingering
time among recommendations (Figure 9). To counteract
this, we propose implementing a maximum threshold for
the latest reviewer contribution. Doing so will reduce the
effect of recommendations drifting away from the active
pool of developers. Our evaluation of various intervals
indicates a trade-off between the developers’ workload and
the staleness of recommendation while having either a
positive or negligible impact on the knowledge of non-stale
reviewers. Unfortunately, it is not possible to recommend
one best cut-off interval to mitigate staleness due to the
contribution of various factors, such as knowledge turnover
rate. However, our findings can help orient practitioners
to obtain more useful recommendations in their specific
circumstances. Using this mitigation strategy, one can strike
a balance between the potential for sharing task knowledge
between stale reviewers and active developers and their
decreasing likelihood of responding as the time since their
latest contribution grows.

REFERENCES

[1] W. H. A. Al-Zubaidi, P. Thongtanunam, H. K. Dam, C. Tan-
tithamthavorn, and A. Ghose, “Workload-aware reviewer

13

recommendation using a multi-objective search-based ap-
proach,” in Proceedings of the 16th ACM International Con-
ference on Predictive Models and Data Analytics in Software
Engineering, 2020, pp. 21–30.

[2] G. Avelino, E. Constantinou, M. T. Valente, and A. Sere-
brenik, “On the abandonment and survival of open source
projects: An empirical investigation,” in 2019 ACM/IEEE
International Symposium on Empirical Software Engineering
and Measurement (ESEM). IEEE, 2019, pp. 1–12.

[3] A. Bacchelli and C. Bird, “Expectations, outcomes, and
challenges of modern code review,” in 2013 35th Inter-
national Conference on Software Engineering (ICSE). IEEE,
2013, pp. 712–721.

[4] L. Bao, X. Xia, D. Lo, and G. C. Murphy, “A large
scale study of long-time contributor prediction for github
projects,” IEEE Transactions on Software Engineering, vol. 47,
no. 6, pp. 1277–1298, 2019.

[5] L. Bao, Z. Xing, X. Xia, D. Lo, and S. Li, “Who will
leave the company?: a large-scale industry study of devel-
oper turnover by mining monthly work report,” in 2017
IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR). IEEE, 2017, pp. 170–181.

[6] M. Chouchen, A. Ouni, M. W. Mkaouer, R. G. Kula, and
K. Inoue, “Recommending peer reviewers in modern code
review: a multi-objective search-based approach,” in Pro-
ceedings of the 2020 Genetic and Evolutionary Computation
Conference Companion, 2020, pp. 307–308.

[7] F. J. Damerau, “A technique for computer detection and
correction of spelling errors,” Communications of the ACM,
vol. 7, no. 3, pp. 171–176, 1964.

[8] E. Doğan, E. Tüzün, K. A. Tecimer, and H. A. Güvenir, “In-
vestigating the validity of ground truth in code reviewer
recommendation studies,” in 2019 ACM/IEEE International
Symposium on Empirical Software Engineering and Measure-
ment (ESEM). IEEE, 2019, pp. 1–6.

[9] V. Etemadi, O. Bushehrian, and G. Robles, “Task assign-
ment to counter the effect of developer turnover in soft-
ware maintenance: A knowledge diffusion model,” Infor-
mation and Software Technology, vol. 143, p. 106786, 2022.

[10] Y. Fan, X. Xia, D. Lo, and S. Li, “Early prediction of merged
code changes to prioritize reviewing tasks,” Empirical Soft-
ware Engineering, vol. 23, pp. 3346–3393, 2018.

[11] N. Fatima, S. Nazir, and S. Chuprat, “Understanding the
impact of feedback on knowledge sharing in modern code
review,” in 2019 IEEE 6th International Conference on Engi-
neering Technologies and Applied Sciences (ICETAS). IEEE,
2019, pp. 1–5.

[12] M. Foucault, M. Palyart, X. Blanc, G. C. Murphy, and J.-
R. Falleri, “Impact of developer turnover on quality in
open-source software,” in Proceedings of the 2015 10th joint
meeting on foundations of software engineering, 2015, pp. 829–
841.

[13] I. X. Gauthier, M. Lamothe, G. Mussbacher, and S. McIn-
tosh, “Is historical data an appropriate benchmark for
reviewer recommendation systems?: A case study of the
gerrit community,” in 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE,
2021, pp. 30–41.

[14] C. Gupta, P. R. Inacio, and M. M. Freire, “Improving soft-
ware maintenance with improved bug triaging,” Journal
of King Saud University-Computer and Information Sciences,
vol. 34, no. 10, pp. 8757–8764, 2022.

[15] F. Hajari, S. Malmir, E. Mirsaeedi, and P. C. Rigby, “Fac-
toring expertise, workload, and turnover into code review
recommendation,” IEEE Transactions on Software Engineer-
ing, 2024.

[16] Y. Hong, C. Tantithamthavorn, P. Thongtanunam, and
A. Aleti, “Commentfinder: a simpler, faster, more accurate
code review comments recommendation,” in Proceedings of
the 30th ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering,
2022, pp. 507–519.

[17] M. A. Huselid, “The impact of human resource manage-
ment practices on turnover, productivity, and corporate
financial performance,” Academy of management journal,
vol. 38, no. 3, pp. 635–672, 1995.

[18] D. Izquierdo-Cortazar, G. Robles, F. Ortega, and J. M.
Gonzalez-Barahona, “Using software archaeology to mea-
sure knowledge loss in software projects due to developer
turnover,” in 2009 42nd Hawaii International Conference on
System Sciences. IEEE, 2009, pp. 1–10.

[19] J. Jiang, J.-H. He, and X.-Y. Chen, “Coredevrec: Automatic
core member recommendation for contribution evalua-
tion,” Journal of Computer Science and Technology, vol. 30,
no. 5, pp. 998–1016, 2015.

[20] J. Jiang, Y. Yang, J. He, X. Blanc, and L. Zhang, “Who
should comment on this pull request? analyzing attributes
for more accurate commenter recommendation in pull-
based development,” Information and Software Technology,
vol. 84, pp. 48–62, 2017.

[21] F. Kazemi, M. Lamothe, and S. McIntosh, “Exploring the
notion of risk in code reviewer recommendation,” in 2022
IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 2022, pp. 139–150.

[22] V. Kovalenko, N. Tintarev, E. Pasynkov, C. Bird, and
A. Bacchelli, “Does reviewer recommendation help devel-
opers?” IEEE Transactions on Software Engineering, vol. 46,
no. 7, pp. 710–731, 2020.

[23] M. Kula, “Metadata embeddings for user and item cold-
start recommendations,” arXiv preprint arXiv:1507.08439,
2015.

[24] L. Li, L. Yang, H. Jiang, J. Yan, T. Luo, Z. Hua, G. Liang,
and C. Zuo, “Auger: automatically generating review com-
ments with pre-training models,” in Proceedings of the 30th
ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2022,
pp. 1009–1021.

[25] N. Li, W. Mo, and B. Shen, “Task recommendation with
developer social network in software crowdsourcing,”
in 2016 23rd Asia-Pacific Software Engineering Conference
(APSEC). IEEE, 2016, pp. 9–16.

[26] Z. Li, S. Lu, D. Guo, N. Duan, S. Jannu, G. Jenks, D. Ma-
jumder, J. Green, A. Svyatkovskiy, S. Fu et al., “Automating
code review activities by large-scale pre-training,” in Pro-
ceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software
Engineering, 2022, pp. 1035–1047.

[27] B. Lin, G. Robles, and A. Serebrenik, “Developer turnover
in global, industrial open source projects: Insights from
applying survival analysis,” in 2017 IEEE 12th International
Conference on Global Software Engineering (ICGSE). IEEE,
2017, pp. 66–75.

[28] J. Lipcak and B. Rossi, “A large-scale study on source code
reviewer recommendation,” in 2018 44th Euromicro Con-
ference on Software Engineering and Advanced Applications
(SEAA). IEEE, 2018, pp. 378–387.

[29] L. MacLeod, M. Greiler, M.-A. Storey, C. Bird, and J. Czer-
wonka, “Code reviewing in the trenches: Challenges and
best practices,” IEEE Software, vol. 35, no. 4, pp. 34–42,
2017.

[30] S. Mani, A. Sankaran, and R. Aralikatte, “Deeptriage:
Exploring the effectiveness of deep learning for bug triag-
ing,” in Proceedings of the ACM India joint international
conference on data science and management of data, 2019, pp.
171–179.

[31] C. Miller, D. G. Widder, C. Kästner, and B. Vasilescu, “Why
do people give up flossing? a study of contributor disen-
gagement in open source,” in IFIP International Conference
on Open Source Systems. Springer, 2019, pp. 116–129.

[32] E. Mirsaeedi and P. C. Rigby, “Mitigating turnover with

14

code review recommendation: balancing expertise, work-
load, and knowledge distribution,” in Proceedings of the
ACM/IEEE 42nd International Conference on Software Engi-
neering, 2020, pp. 1183–1195.

[33] A. Mockus, “Organizational volatility and its effects on
software defects,” in Proceedings of the eighteenth ACM
SIGSOFT international symposium on Foundations of software
engineering, 2010, pp. 117–126.

[34] A. Mockus and J. D. Herbsleb, “Expertise browser: a quan-
titative approach to identifying expertise,” in Proceedings of
the 24th international conference on software engineering. icse
2002. IEEE, 2002, pp. 503–512.

[35] N. K. Nagwani and J. S. Suri, “An artificial intelligence
framework on software bug triaging, technological evolu-
tion, and future challenges: A review,” International Journal
of Information Management Data Insights, vol. 3, no. 1, p.
100153, 2023.

[36] M. Nassif and M. P. Robillard, “Revisiting turnover-
induced knowledge loss in software projects,” in 2017
IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 2017, pp. 261–272.

[37] H. S. Qiu, Y. L. Li, S. Padala, A. Sarma, and B. Vasilescu,
“The signals that potential contributors look for when
choosing open-source projects,” Proceedings of the ACM on
Human-Computer Interaction, vol. 3, no. CSCW, pp. 1–29,
2019.

[38] M. M. Rahman, C. K. Roy, and J. A. Collins, “Correct: code
reviewer recommendation in github based on cross-project
and technology experience,” in Proceedings of the 38th inter-
national conference on software engineering companion, 2016,
pp. 222–231.

[39] M. Rashid, P. M. Clarke, and R. V. O’Connor, “A systematic
examination of knowledge loss in open source software
projects,” International Journal of Information Management,
vol. 46, pp. 104–123, 2019.

[40] P. C. Rigby, Y. C. Zhu, S. M. Donadelli, and A. Mockus,
“Quantifying and mitigating turnover-induced knowledge
loss: case studies of chrome and a project at avaya,” in
Proceedings of the 38th International Conference on Software
Engineering, 2016, pp. 1006–1016.

[41] M. P. Robillard, “Turnover-induced knowledge loss in
practice,” in Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 2021, pp. 1292–1302.

[42] S. Ruangwan, P. Thongtanunam, A. Ihara, and K. Mat-
sumoto, “The impact of human factors on the participation
decision of reviewers in modern code review,” Empirical
Software Engineering, vol. 24, no. 2, pp. 973–1016, 2019.

[43] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and
A. Bacchelli, “Modern code review: a case study at
google,” in Proceedings of the 40th International Conference on
Software Engineering: Software Engineering in Practice, 2018,
pp. 181–190.

[44] P. N. Sharma, J. Hulland, and S. Daniel, “Examining
turnover in open source software projects using logistic
hierarchical linear modeling approach,” in Open Source
Systems: Long-Term Sustainability: 8th IFIP WG 2.13 Interna-
tional Conference, OSS 2012, Hammamet, Tunisia, September
10-13, 2012. Proceedings 8. Springer, 2012, pp. 331–337.

[45] A. Strand, M. Gunnarson, R. Britto, and M. Usman, “Using
a context-aware approach to recommend code reviewers:
findings from an industrial case study,” in Proceedings
of the ACM/IEEE 42nd International Conference on Software
Engineering: Software Engineering in Practice, 2020, pp. 1–10.

[46] P. Thongtanunam, R. G. Kula, A. E. C. Cruz, N. Yoshida,
and H. Iida, “Improving code review effectiveness through
reviewer recommendations,” in Proceedings of the 7th In-

ternational Workshop on Cooperative and Human Aspects of
Software Engineering, 2014, pp. 119–122.

[47] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula,
N. Yoshida, H. Iida, and K.-i. Matsumoto, “Who should
review my code? a file location-based code-reviewer rec-
ommendation approach for modern code review,” in 2015
IEEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER). IEEE, 2015, pp.
141–150.

[48] Z. Ton and R. S. Huckman, “Managing the impact of
employee turnover on performance: The role of process
conformance,” Organization Science, vol. 19, no. 1, pp. 56–
68, 2008.

[49] X. Xia, D. Lo, X. Wang, and X. Yang, “Who should review
this change?: Putting text and file location analyses to-
gether for more accurate recommendations,” in 2015 IEEE
international conference on software maintenance and evolution
(ICSME). IEEE, 2015, pp. 261–270.

[50] M. B. Zanjani, H. Kagdi, and C. Bird, “Automatically
recommending peer reviewers in modern code review,”
IEEE Transactions on Software Engineering, vol. 42, no. 6, pp.
530–543, 2015.

[51] J. Zhang, C. Maddila, R. Bairi, C. Bird, U. Raizada,
A. Agrawal, Y. Jhawar, K. Herzig, and A. van Deursen,
“Using large-scale heterogeneous graph representation
learning for code review recommendations at microsoft,”
in 2023 IEEE/ACM 45th International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP).
IEEE, 2023, pp. 162–172.

Farshad Kazemi is a PhD student in the David
R. Cheriton School of Computer Science at the
University of Waterloo, Canada. His research in-
terests include code review recommendation ap-
proaches, Code Review and its impact on code
quality, and empirical software engineering.

Maxime Lamothe is an Assistant Professor at
Polytechnique Montreal. His research interests
include software evolution, software APIs, soft-
ware dependencies, software build systems, ma-
chine learning, and empirical software engineer-
ing.

Shane McIntosh is an Associate Professor in
the David R. Cheriton School of Computer Sci-
ence at the University of Waterloo, where he
leads the Software Repository Excavation and
Build Engineering Labs (Software REBELs). In
his research, Shane uses empirical methods
to study software build systems, release engi-
neering, and software quality: https://rebels.cs.
uwaterloo.ca/.

https://rebels.cs.uwaterloo.ca/
https://rebels.cs.uwaterloo.ca/

	1 Introduction
	2 Related Work
	3 Study Design
	3.1 Dataset Preparation
	3.2 Mining Contributors Lifecycle
	3.3 Key Terms
	3.4 Generating Reviewer Recommendations
	3.5 Data Processing

	4 Preliminary Study
	5 RQ1: The Prevalence of Stale Reviewers in CRRs
	6 RQ2: The Distribution of Stale Recommendations Across Reviewers
	7 RQ3: The Lingering effect of stale recommendations
	8 Mitigation Plan
	9 Threats to Validity
	10 Conclusions and Lessons Learned
	Biographies
	Farshad Kazemi
	Maxime Lamothe
	Shane McIntosh

