
1

Characterizing Timeout Builds in Continuous
Integration

Nimmi Weeraddana, Student Member, IEEE , Mahmoud Alfadel, Member, IEEE ,
and Shane McIntosh, Senior Member, IEEE

Abstract—Compute resources that enable Continuous Integration (CI, i.e., the automatic build and test cycle applied to the change
sets that development teams produce) are a shared commodity that organizations need to manage. To prevent (erroneous) builds from
consuming a large amount of resources, CI service providers often impose a time limit. CI builds that exceed the time limit are
automatically terminated. While imposing a time limit helps to prevent abuse of the service, builds that timeout (a) consume the
maximum amount of resources that a CI service is willing to provide and (b) leave CI users without an indication of whether the change
set will pass or fail the CI process. Therefore, understanding timeout builds and the factors that contribute to them is important for
improving the stability and quality of a CI service. In this paper, we investigate the prevalence of timeout builds and the characteristics
associated with them. By analyzing a curated dataset of 936 projects that adopt the CircleCI service and report at least one timeout
build, we find that the median duration of a timeout build (19.7 minutes) is more than five times that of a build that produces a pass or
fail result (3.4 minutes). To better understand the factors contributing to timeout builds, we model timeout builds using characteristics of
project build history, build queued time, timeout tendency, size, and author experience based on data collected from 105,663 CI builds.
Our model demonstrates a discriminatory power that vastly surpasses that of a random predictor (Area Under the Receiver Operating
characteristic Curve, i.e., AUROC = 0.939) and is highly stable in its performance (AUROC optimism = 0.0001). Moreover, our model
reveals that the build history and timeout tendency features are strong indicators of timeout builds, with the timeout status of the most
recent build accounting for the largest proportion of the explanatory power. A longitudinal analysis of the incidences of timeout builds
(i.e., a study conducted over a period of time) indicates that 64.03% of timeout builds occur consecutively. In such cases, it takes a
median of 24 hours before a build that passes or fails occurs. Our results imply that CI providers should exploit build history to
anticipate timeout builds.

Index Terms—Build Systems, Continuous Integration, Timeout Builds, Statistical Models

✦

1 INTRODUCTION

CONTINUOUS INTEGRATION (CI) is a software devel-
opment practice that involves frequently integrating

code changes into a shared repository [10]. The primary
objective of CI is to provide developers with prompt feed-
back, enabling them to check if their modifications integrate
seamlessly with the existing codebase and the changes other
team members have been developing concurrently [14].
Prior work shows that the adoption of CI is associated
with improvements in developer productivity [29, 49] and
software quality [30, 50, 55].

Using a CI service that is suboptimally configured can
impede timely feedback and waste computational resources
[15, 56, 59]. To reduce waste and limit abuse of resources,1

CI service providers often impose a time limit for CI builds.
For example, in the CircleCI2 context (a popular CI service
provider), a build “times out” if the CI process has not
produced output for a set time limit (imposed by default
or configured by project teams). If the limit is exceeded,
the build is terminated. Configuring a time limit prevents
erroneous builds from consuming an indefinite amount of

• N. Weeraddana, M. Alfadel, and S. McIntosh are with the Cheriton School
of Computer Science, University of Waterloo, Canada.
E-mail: {nrweeraddana, malfadel, shane.mcintosh}@uwaterloo.ca

Manuscript received date; revised date.
1https://support.circleci.com/hc/en-us/articles/360045268074
2https://circleci.com

organizational or team CI resources due to common mis-
takes, such as infinite loops or (temporary) unavailability of
network resources.

A CI build that times out does not deliver a definite
signal to developers about the change set under scrutiny
(i.e., do the changes integrate safely or not?) [14]. If timeout
builds occur frequently, developers may not be able to
progress on their work. One such example is shown in the
Homebrew project,3 where developers discussed the issue
of observing frequent timeout builds and its consequence:
several pull requests (PRs) being stalled in the backlog to be
reviewed and/or integrated.

CI builds that time out also burden CI service providers
with jobs that occupy an allocation of computational re-
sources for an extended period of time without yielding
meaningful outcomes for CI consumers [14]. To compensate
for these wasteful jobs, CI service providers may need to
over-allocate computational resources to their production
environments in order to maintain their quality of service.
This, in turn, increases the operational cost and introduces
maintenance complexities.

Thus, our goal in this study is to investigate the preva-
lence and characteristics of timeout builds. In the initial
stage of our study, we analyze 936 GitHub projects that
reported at least one timeout build. We find that timeout
builds last for a median of 19.7 minutes, which is more

3https://github.com/Homebrew/discussions/discussions/4075

© 2024 IEEE. Author pre-print copy. The final publication is available online at: https://doi.org/10.1109/TSE.2024.3387840

https://support.circleci.com/hc/en-us/articles/360045268074
https://circleci.com
https://github.com/Homebrew/discussions/discussions/4075
https://doi.org/10.1109/TSE.2024.3387840

2

than five times longer than the median duration of signal-
generating builds [14] (i.e., builds that have either a fail or
pass outcome).

To investigate the factors that characterize the outcome
of CI builds, we fit and analyze regression models. For this
analysis, we extract five families of features from a dataset of
105,663 CI builds that span 24 projects. Among these builds,
1,301 timed out. Below, we present our research questions
and a preview of the corresponding answers:

(RQ1) How well can our models explain the incidences
of timeout builds? To evaluate whether and how well our
model distinguishes builds that will time out from those that
will not, we estimate the discriminatory power of the model
using the Area Under the (Receiver Operating characteristic)
Curve (AUROC) [21], its calibration using the Brier score [4],
and its ability to balance the precision-recall tradeoff using
the Area Under Precision-Recall Curve (AUPRC) [46]. We
assess the stability of these fitness scores using a bootstrap-
derived optimism penalty [11]. Our model achieves an
AUROC of 0.939—a discriminatory power that vastly sur-
passes that of naı̈ve baselines, such as random guessing
(AUROC of 0.5). Moreover, the model achieves a Brier score
of 0.008—a calibration score that suggests the risk estimates
of the model are highly reliable. In terms of stability, our
model has only a small optimism penalty of less than one
percentage point in terms of both AUROC and Brier score,
suggesting that the model is unlikely to be overfitted to the
data on which it was trained. Lastly, in terms of the balance
between precision and recall, our model’s AUPRC of 0.319
outperforms the baseline performance (AUPRC of 0.012).

(RQ2) What are the most influential features of our models
of timeout builds? To assess the explanatory power of each
(family of) feature(s), we perform Wald χ2 (a.k.a., “chunk”)
tests [43]. We find that timeout builds are best characterized
by the family of build history features, which contains the
status of recent builds, their durations, and the proportion
of the builds that have previously timed out. Indeed, build
history features contribute to more than half (70%) of the
explanatory power of the model. Furthermore, our model
reveals that timeout tendency features (e.g., file tendency)
are among the most powerful features to influence timeout
builds, suggesting that change sets that include specific files
or components are more often implicated in CI builds that
time out than others. We also reveal that a non-negligible
proportion (15%) of files more often appear in the change
sets of timeout builds than signal-generating builds.

Inspired by the results of our model, we perform a lon-
gitudinal analysis of the occurrences of timeout builds. We
find that the majority (64.03%) of the timeout builds occur in
clusters (i.e., timeout builds tend to occur consecutively). A
considerable proportion (20%) of these clusters comprise at
least six builds. We also find that once a cluster of timeout
builds is observed, it takes a median of 24 hours before a
signal-generating build occurs.

To further understand the root causes of build timeouts,
we conduct a thematic analysis of 79 GitHub discussions,
encompassing 406 comments. This analysis uncover six
primary causes for CI timeouts. Among these, the most
frequent reason is inefficiencies in testing processes.

Our results highlight the importance of considering the

historical context of builds for CI service providers and
consumers to anticipate timeout builds. For example, CI
providers could target efforts to enhance their infrastruc-
ture, optimize resource allocation, and fine-tune their sys-
tems to cater to specific demands of individual software
projects, reducing the occurrence of timeouts. CI consumers
can also leverage this knowledge to prioritize their attention
to recent builds and their associated characteristics. More-
over, developers may identify timeout-prone files and focus
their efforts on those files when troubleshooting timeouts.
Finally, our longitudinal analysis suggests the existence of
underlying systemic issues that contribute to prolonged
periods of consecutive builds that time out, and our anal-
ysis reveals a catalog of potential root causes for timeouts.
Developers can investigate timeout clusters to identify and
address the root causes, leading to more stable CI processes.

2 CONTINUOUS INTEGRATION (CI) AND TIMEOUTS

This section provides a background about CI and timeouts.

CI Configurations. The instructions for executing a CI build
(e.g., the machine specification, the order of test execution,
etc.) are detailed in a configuration file. An illustrative
example is CircleCI, where these settings are delineated
in a .circleci/config.yml file located at the root of
the project’s repository.4 This file contains all the necessary
details to guide the CircleCI system on how to execute
the builds, including the machine specifications, the order
in which tests should be run, and other relevant build
parameters.

CI Build Outcomes. CI builds are executed based on the
specified configurations with the goal of providing clear
feedback on the recent code changes. Nevertheless, the
outcomes of these builds are not always straightforward.
Our prior work classifies them into two categories [14]: (1)
signal-generating builds, which executes until completion,
resulting in either a pass or fail signal. A passing build
indicates to the developers that the code changes have
met the minimum required checks, while a failing build
alerts users about the issues in the code changes [14]; (2)
non-signal-generating builds, which terminates before com-
pletion due to user-initiated aborts, configuration errors,
and infrastructure provisioning issues (e.g., timeouts). These
builds do not provide developers with a meaningful signal
about their code changes [14].

CI Logs. CI build outcomes are meticulously recorded in
build logs, which serve as comprehensive records of the
build process. These logs not only capture the outcomes but
also provide crucial data for analysis and troubleshooting.
For example, in the context of CircleCI, the build outcomes
and their detailed logs are conveniently stored within a
specific section of the CircleCI interface.5 This is typically
accessible through the project’s dashboard on the CircleCI
website, allowing users to easily review and analyze the
results of each build. This accessibility plays a significant
role in the maintenance and enhancement of the software
development process.

4https://circleci.com/docs/configuration-reference/
5https://circleci.com/docs/audit-logs/

https://circleci.com/docs/configuration-reference/
https://circleci.com/docs/audit-logs/

3

CI Timeout Builds and Time Limits Adjustment. CI
timeout builds represent a distinct subset of non-signal-
generating builds [14]. These occur when a build surpasses
its allotted time frame, hinting at possible code inefficien-
cies like performance bottlenecks.6 A few other studies
[5, 9, 14, 58] have also considered timeouts as a special type
of build outcome. Our study adds to prior work by explicitly
focusing on characterizing timeouts.

Addressing such CI timeout builds requires adjusting
time limits for timing out. In CircleCI, the default time
limit for timing out is ten minutes,7 but a developer can
change this default limit. This is done by adding the
no_output_timeout setting to the CI configurations in
the .circleci/config.yml file. For instance, to set a 30-
minute time limit, the no_output_timeout setting should
be set to 30m. Doing so ensures that if the job produces no
output for 30 minutes, CircleCI will automatically terminate
the job. This feature is useful for managing resource usage
and detecting jobs that are stuck or taking unusually long to
complete. Properly setting these time constraints is crucial
to prevent extended, resource-intensive build processes.

An example of timeout builds is reported in an issue
from the raft-tech/TANF-app project,8 describing how time-
out builds impact the project. The issue reports that 14 of the
33 nightly builds are timeout builds. To fix the issue, de-
velopers suggested increasing the no_output_timeout,
which is a frequently recommended fix for CircleCI time-
outs. This fix is not always optimal because each project
using CircleCI is billed according to their use of “build-
minutes” on the service. Increasing the time limit would
increase service usage. Moreover, it is unclear how much
the time limit should be increased to allow long-running
commands to terminate. Another discussed option was to
omit vulnerability scans from their CI process since those
scans take a long time to complete and are silent during
their execution, leading to the CircleCI timeouts. This is also
suboptimal because the CI process of the project would no
longer benefit from the early detection of vulnerabilities.
The raft-tech organization is not the only one struggling
with the timeout problem.

3 THE PREVALENCE OF CI TIMEOUT BUILDS

In this section, we report on an exploratory analysis of
timeout builds in CircleCI. In particular, we analyze the
frequency at which timeout builds occur (Section 3.1) and
the quantity of waste that timeouts generate (Section 3.2).

3.1 The Frequency of Timeout Builds

To estimate how often timeout builds occur, we require a
large and rich collection of build records from a realistic CI
service. Since there has been an increase in the adoption
of CI practices [19], a proliferation and a diversity of CI
services exists in the market to cater increasing demands of
collaborative software development and DevOps practices.

6https://support.circleci.com/hc/en-us/articles/
360007188574-Build-has-Hit-Timeout-Limit

7https://support.circleci.com/hc/en-us/articles/
16616033407131-Max-Runtime-in-CircleCI-Server

8https://github.com/raft-tech/TANF-app/issues/1534

0 10 20 30 40 50
Duration (minutes)

timeouts builds
signal-generating builds
median duration of timeout builds = 19.7
median duration of signal-generating builds = 3.4

Fig. 1: The distributions of the duration of timeout and
signal-generating builds.

As indicated in prior work [14], CircleCI is one of the (if
not the) most popular CI service(s). In fact, CircleCI has
748k installations over an eight-year period [14]. Given its
widespread usage and the advantages offered (e.g., support
for multiple source code hosting services including GitHub
and shareable packages of CI configurations) to consumers
over other CI services,9 we focus our analysis on CircleCI.
For a detailed discussion of the advantages of CircleCI over
other CI services, we encourage interested readers to read
the comparison of CI services provided in our Online Ap-
pendix A. 10 We begin with a dataset curated by Gallaba et
al. [14], which contains CircleCI builds of 7,795 open-source
GitHub projects. This dataset contains the outcome (e.g.,
pass, failed, timeout, and canceled) for each of the CI builds
that it contains. For our analysis, we select the projects that
have at least one CI build with its outcome status being
“timeout.” Of the 7,795 projects in the dataset, we find
that 936 (12%) projects contain at least one timeout build.
Among these 936 projects, a median of four timeout builds
is observed, suggesting that the distribution is skewed [41].
Indeed, we find that 10% of the projects account for 44 or
more timeouts each, while an extreme 4% of the projects
account for 100 or more timeouts each. Overall, this suggests
that timeout builds are a relevant issue in the context of
GitHub projects.

3.2 The Quantity of Timeout Waste
Fig. 1 shows the durations of signal-generating builds [14]
(dark grey) and timeout builds (light grey) in the 936
projects that have at least one timeout. From the figure, we
observe that a timeout lasts for a median of 19.7 minutes.
This is almost fivefold longer than the median duration
of signal-generating builds with fail or pass outcomes (3.4
minutes). In certain situations, the issue of timeouts is ex-
acerbated. For example, in the Homebrew/linuxbrew-core
project,11 the median duration of a timeout build is 125.3
minutes, which is 21 times the median duration of a signal-
generating build.

Furthermore, even though some projects are accountable
for small proportions of timeouts in the dataset, a large
quantity of waste is attributable to them. For example,
coala/coala project12 accounts for only 1.7% of the timeouts
in the dataset, but it results in a total waste of 111 build
hours. Besides, from the viewpoint of a CI provider, the
impact is amplified; the higher the number of timeouts, the

9https://circleci.com/docs/
10https://zenodo.org/records/10901318
11https://github.com/Homebrew/linuxbrew-core
12https://github.com/coala/coala

https://support.circleci.com/hc/en-us/articles/360007188574-Build-has-Hit-Timeout-Limit
https://support.circleci.com/hc/en-us/articles/360007188574-Build-has-Hit-Timeout-Limit
https://support.circleci.com/hc/en-us/articles/16616033407131-Max-Runtime-in-CircleCI-Server
https://support.circleci.com/hc/en-us/articles/16616033407131-Max-Runtime-in-CircleCI-Server
https://github.com/raft-tech/TANF-app/issues/1534
https://circleci.com/docs/
https://zenodo.org/records/10901318
https://github.com/Homebrew/linuxbrew-core
https://github.com/coala/coala

4

TABLE 1: Description and rationale of the selected features.
“F.” stands for family.

F. Description/Rationale

Bu
ild

hi
st

or
y

recent build status: Whether the previous build timed out or not.
Rationale: If a project has a recent history of timeout builds, the
build is more likely to time out (inspired by the prior work [7, 44]).

recent build duration: The duration of the prior build.
Rationale: A project with a recent history of long build durations
may be more likely to have the build take longer and be timed
out (inspired by GitHub issues13).

timeout ratio: The proportion of builds that timed out.
Rationale: Inspired by studies that predict build outcomes [7], we
expect greater timeout ratios to portend future timeouts.

W
he

n queued month, day, hour, and minute: The moment when the
build was queue for processing.
Rationale: Build requests of particular times may be more/less
prone to timeouts.

Si
ze

loc: The number of lines of code within the files changed.
Rationale: The size of the files changed may have an impact on
the likelihood of the build to time out.

insertions, deletions, files: The sum of inserted/deleted lines of
code and the number of unique files touched.
Rationale: The size of the change corresponding to the build may
have some relation to timeout builds (inspired by similar studies
on build failure prediction [40, 44]).

A
ut

ho
r

ex
p.

changes to related files/changes to any file: The sum of prior
changes by the authors to (a) the files changed; and (b) any file.
lines added to/deleted from related files/any file: The sum of
prior lines of code added/deleted by the author to (a) the files
changes; and (b) any file.
Rationale: The familiarity of developers with the overall codebase
and specific areas may have an impact on the timeout builds [40].

Ti
m

eo
ut

te
nd

en
cy author tendency: The number of prior timeout builds that contain

commits by the authors.
Rationale: If the author tendency of a build is high, it has a high
chance of timing out [52].

file tendency: The number of prior timeout builds that contain
changes to the files.
Rationale: We hypothesize that the higher the file tendency of a
certain build, the higher the chance of that build timing out [52].

more resources the provider must allocate to maintain the
quality of service in the presence of increased uncertainty.

4 STUDY DESIGN

The analysis in Section 3 demonstrates that timeout builds
account for a large quantity of CI waste and motivates us
to study the characteristics of timeout builds. In this section,
we describe our procedures for curating our dataset (DC)
and fitting our models (MF) to characterize timeout builds.
Fig. 2 shows an overview of our study design.

(DC) Data Curation

We begin with the Gallaba et al. [14] dataset of CirclCI builds
which explicitly labels passing builds, failing builds as well
as timeout builds that we need for our study. Fig. 2 (DC)
shows an overview of the two-step data curation procedure.
Below, we describe each step.

(DC-1) Select projects. It is important to highlight that a
substantial portion of the timeout builds in the dataset are

Fig. 2: An overview of our study design.

contributed by specific projects. Additionally, GitHub ac-
commodates projects that are still not yet mature. Conduct-
ing a closer examination of mature and disproportionately
affected projects would yield valuable insights regarding the
workload for the CI provider and raise awareness among
project maintainers. To ensure a focused analysis isolating
the key factors contributing to these issues, we apply the
following filtering criteria to the projects from the original
dataset.
• Select projects with a substantial number of timeout

builds. Our initial dataset contains 936 projects that
suffer from at least one timeout. To conduct our study
on a set of projects that suffer from a meaningful number
of timeouts, we sort the projects in descending order of
the timeout frequency. Note that our study requires in-
depth data extraction (e.g., collecting the commit and file
records for each project). Therefore, to make the study
feasible, we consider a subset of projects that account for
more than half of all timeout builds collected from the
entire dataset. This step yields 34 projects covering 54%
of all timeout builds collected from the entire dataset.
The selected projects have a rich development history
with a median of 3,966 commits made by a median of
82 contributors. Moreover, the dataset includes popular
projects, such as the palantir/atlasdb14 project.

• Remove projects having timeout builds only on tempo-
rary branches. For each surviving project, we select the
timeout builds that appear on its main/master branch.
Doing so ensures that all selected commits correspond-
ing to the builds are still accessible, mitigating inconsis-
tencies caused by the removal of temporary branches.
We find eight of the selected projects exclusively contain
timeout builds on temporary branches, and we filter
these projects out of further analysis. Thus, we find 26
projects that survive this step.

• Select projects that are publicly available. We need to
extract project-related data, such as commits and lines of
code. We select projects that are publicly available when
conducting this work (22nd November 2022). We use the
GitHub API to check the accessibility of projects. Doing
so excludes two projects, leaving us with 24 projects
eligible for our analysis.
Our final dataset consists of 105,663 CI builds spanning

24 projects. Of these builds, 1,301 are timeouts, while the
remaining builds generate a pass/fail signal.

Note that our dataset is imbalanced in terms of the two
classes — a common phenomenon in software engineering
research [3]. Class balancing is particularly important in

14https://github.com/palantir/atlasdb

https://github.com/palantir/atlasdb

5

scenarios where the minority class is of greater interest
than the majority, such as in fraud detection or rare disease
diagnosis [28]. Class balancing tends to improve the recall
(by fitting the model in an environment where the minority
class is more prevalent than it actually is, the model is more
likely to raise timeout alerts and catch timeout examples),
but at the cost of precision (since the model is prone to
raising plenty of timeout warnings, in real-world scenarios,
where timeouts are rare, the model is likely to raise plenty
of false alarms). In our case, even though the minority class
(timeouts) is of great importance, we do not want to inflate
the false positive rate. We are interested in modelling the
characteristics of builds that are most likely timeouts and
not the ones that have a little chance of being a timeout.
Thus, leaving the classes imbalanced in our dataset creates a
model that is reflective of real-world scenarios. That said, to
see if there is a substantial change in the results after balanc-
ing the classes, we rerun our experiments separately in the
following class balancing scenarios: (1) Oversampling with
the Synthetic Minority Over-sampling TEchnique (SMOTE)
[6], (2) Undersampling with the Random method [26, 42],
and (3) Combining both SMOTE oversampling ans random
undersampling. We do not observe substantial changes in
our results. Thus, we use the dataset without any class
balancing in the rest of this study. A detailed description
of this analysis is available in our Online Appendix B.10

Furthermore, we find that the percentage of time-
outs varies from one project to another. For example, the
docker-atlassian-confluence/cptactionhank project accounts
for 20.8% of the timeouts in our sample, whereas the median
proportion across the 24 projects is 2.3%. To account for the
impact of any bias introduced by this project, we rebuild
our statistical model (Section 4 MF). We do not observe any
substantial differences in the model fits. Interested readers
can refer to our Online Appendices C and D10 for more
details.

(DC-2) Curate features. To determine a set of features that
characterize timeout builds, we consult the related literature
in the areas of build outcome prediction [7, 40, 44] and defect
prediction [52]. Table 1 shows the initial list of 19 features
that span five properties of a build, along with the rationale
for each feature’s impact in the context of build outcomes.
We use Gallaba et al.’s dataset [14] and Git commit logs to
extract these features; we describe this in detail below.

Features extracted using Gallaba et al.’s dataset [14]. For
each build in our dataset, we extract build-history features,
i.e., the most recent build outcome, the most recent build
duration, and the timeout ratio, i.e., the ratio of the total
number of timeout builds in a project to the total number
of builds of the project that triggered before the build under
analysis. We also extract queuing-related features, such as
the build queued time (the month, day, and hour, and
minute). We also extract features concerning the tendency
of builds to timeout [52], such as the number of previous
timeout builds involving commits by the same authors
(author tendency) and the number of prior timeout builds
with changes to the same files (file tendency). Build history
and tendency features may not be precise at the beginning
but will adapt to more accurately reflect values over time.

Features extracted from commit logs. To get the change

set size-related data [40], we analyze the commit log of
each project, and extract the unique number of files added,
modified, or deleted, as well as the number of lines inserted
or deleted in the commits associated with each build. We
also extract the features that estimate the project-specific
experience of the authors of the commits [40]. For instance,
we derive features like the total number of prior commits
made by the commit authors associated with each build.

(MF) Model Fitting
Our goal is to study what characterizes timeout builds.
Therefore, we select a statistical regression modeling pro-
cedure, which, unlike other classification techniques, em-
phasizes interpretability. In fact, statistical models like lo-
gistic regression provide clear insights into how different
factors influence outcomes, making them ideal for nuanced
analysis.15 Thus, we fit logistic regression models using the
approach recommended by Harrell Jr. [24]. This approach
relaxes linearity assumptions using restricted cubic splines
to allow features to share complex relations with the out-
come (i.e., the likelihood of inducing a timeout in our case).
Fig. 2 (MF) provides an overview of the steps we follow.

(MF-1) Mitigate collinearity. Collinear features distort each
others’ importance in the model [38, 39]. Thus, we first
check for collinearity among our features using Spearman’s
ρ rank correlation [48]. We choose a rank correlation instead
of other types of correlation measures (e.g., Pearson) be-
cause the rank correlation can detect nonlinear correlations.
Similar to prior work [17, 20, 51], we use ρ = 0.7 as our
threshold, i.e., any pair of features with ρ > 0.7 should have
one of the features removed prior to model interpretation.

The hierarchical overview of the correlations among the
features is shown in Fig. E.1 in our Online Appendix E.10

Selecting one feature from the pairs of features that have
ρ > 0.7 eliminates the following six features: loc, files, lines
added to the related files, lines added to any file, lines
deleted from the related files, and lines deleted from any
file. We provide details on reasons for choosing one over
the other in our Online Appendix E.10

(MF-2) Mitigate multicollinearity. We perform a
redundancy analysis on the surviving 13 non-correlated
features to mitigate multicollinearity that can introduce
noise in model interpretation. A feature may introduce
multicollinearity if it can be modelled using the other
features. We eliminate such redundant features using the
redun function in R, which fits a set of 13 models that each
explain one feature using the 12 other features. Features
having model fits that exceed the threshold (R2 > 0.9)
are recommended for exclusion [21]. Applying redun
to our set of features did not identify any additional
features for exclusion. Note that reducing collinearity
and multicollinearity helps to identify the independent
contributions of each feature to the outcome [34].

(MF-3) Estimate the budget for Degrees of Freedom (DoF)
[11, 22]. All of the features are allocated at least one DoF
in our fit. A feature that is allocated a single DoF can
only capture monotonic and linear relationships with the

15https://www.fharrell.com/post/stat-ml/

https://www.fharrell.com/post/stat-ml/

6

likelihood of a CI build timing out. Allocating additional
DoF to features allows our model to capture nonmonotonic
and nonlinear relationships with the likelihood of a CI build
timing out [12]. On the other hand, spending additional DoF
to fit our model increases its risk of overfitting (i.e., being
too specifically tuned to the training data to apply to testing
examples). This tradeoff between model expressiveness and
the risk of overfitting is often balanced by respecting a DoF
budget [23]. Following prior work [24, 25], the DoF budget
for a logistic regression model can be estimated as n

15 , where
n is the number of records in the minority class. Thus, the
DoF budget for our model is 1,301

15 = 86.

(MF-4) Allocate DoF. To expend our budget prudently, we
assign more DoF to features that are most likely to have a
nonmonotonic relationship with CI timeouts, as determined
by Spearman’s multiple ρ2. Fig. F.1 in our Online Appendix
F10 shows the ρ2 value for each feature. From the figure, we
observe that the recent build status, timeout ratio, author
tendency, file tendency, and recent build duration have
higher ρ2 values than the other features. Thus, we allocate
three DoF for those features except for the status of the most
recent build since it is a binary feature.

Finally, we fit our regression model to our data, applying
restricted cubic splines [23] to the features with additional
DoF. These splines smooth transitions between direction
changes using cubic fits, while allowing tail regions to retain
more linear (straight) shapes. We make our dataset and the
replication package available online.10

5 STUDY RESULTS

In this section, after an initial analysis of the fitness of
our model (Section 5.1), we characterize timeout builds by
analyzing the importance of the features (Section 5.2).

5.1 (RQ1) How well can our models explain the inci-
dences of timeout builds?
Approach. We evaluate the fitness of our model according
to (a) its discriminatory power, (b) the calibration of its risk
estimates, (c) the stability of the fit, and (d) the ability to
balance precision and recall particularly in datasets with
imbalanced classes like ours. We estimate the discriminatory
power of our model using the Area Under Receiver Operating
Characteristic Curve (AUROC) [21], which plots the true pos-
itive rate against the false positive rate; AUROC values of 0,
0.5, and 1 represent the worst discrimination, random guess-
ing, and perfect discrimination, respectively. We estimate
the calibration of the risk estimates that are produced by our
model using the Brier Score [4], i.e., the mean squared error
of the predicted probabilities. A Brier score of 0 indicates the
perfect calibration, whereas a score of 1 indicates the worst.
Finally, we estimate the stability of our model fitness using
the bootstrap-calculated optimism [11]. We begin by obtain-
ing a sample from our dataset using bootstrap sampling.
Then, we refit our logistic regression model to this bootstrap
sample with the same allocation of degrees of freedom used
in the original dataset. Next, we calculate the AUROC and
Brier score of this bootstrap model when (a) reapplied to
the bootstrap sample on which it was trained and (b) on
the original sample. After that, we estimate the AUROC

TABLE 2: Model fitness.

AUROC Brier score AUPRC

0.939 0.008 0.319

optimism by subtracting the respective fitness measures in
the bootstrap sample from that of the original data. We
repeat this process for 1,000 bootstrap iterations, and report
the mean optimism values. The closer the mean optimism
values of these fitness scores are to zero, the greater the sta-
bility of the fit. Lastly, we calculate the precision and recall
for various threshold values representing the likelihood of
a CI build being classified as a “timeout build.” Next, we
compute the Area Under Precision-Recall Curve (AUPRC) to
measure our model’s ability to balance precision and recall
across different probability thresholds in the context of our
imbalanced-class dataset [46]. The AUPRC is also a value
between 0–1. Then, we compare our AUPRC with a base-
line approach. The baseline is determined by the positive
class prevalence, i.e., tp

tp+tn [46]. The baseline appropriate
for a balanced class distribution is 0.5. However, for our
dataset, the baseline is 1,301

1,301+104,362 = 0.012.

Results. Table 2 shows the results of our model’s fitness,
and we make the following observations based on the table.

Observation 1: Our model can discriminate between
timeout and non-timeout builds effectively, with well-
calibrated risk estimates. Our model achieves an AUROC
of 0.939, vastly surpassing the AUROC of naı̈ve baselines,
such as random guessing (AUROC of 0.5). Also, our model
achieves a Brier score of 0.008—our model has a near-perfect
calibration, and its risk estimates are highly reliable [4].

Observation 2: Our model is highly stable to bootstrap-
simulated variability [24]. The mean optimism value for
AUROC measure is 0.0001, which is close to perfect op-
timism [24]. This shows that the AUROC value calcu-
lated using the bootstrap samples and the AUROC value
computed using the original dataset are not substantially
different. Similarly, the mean optimism value for the Brier
score measure is -0.0002. Such small optimism penalties
below 1% point suggest that the model is unlikely to be
overfitted to the data on which it was trained.

Observation 3: Our model demonstrates a commend-
able balance between precision and recall. Our model
achieves a AUPRC of 0.319, surpassing the corresponding
baseline of 0.012. This shows its effectiveness in distinguish-
ing positive instances and minimizing false positives, espe-
cially crucial in our dataset of CI builds with imbalanced
class distribution of timeout builds and other builds.

The discriminatory power and calibration of our
model are excellent (AUROC of 0.939, AUPRC of
0.319, and Brier score of 0.008). Moreover, the fit
is highly stable across different bootstrap samples
(mean optimism values of 0.0001 and -0.0002 for
AUROC and Brier score, respectively). Lastly, our
model successfully balances precision and recall,
achieving an AUPRC of 0.319, which surpasses the
respective baseline.

7

TABLE 3: Importance of families.

Family Overall Nonlinear

Build history D.F. 5 2
χ2 3,063.19 *** 440.14 ***

Timeout tendency D.F. 5 3
χ2 20.77 *** 20.27 ***

Queued time D.F. 4 -
χ2 6.79 ◦ -

Author experience D.F. 2 -
χ2 1.95 ◦ -

Size D.F. 2 -
χ2 0.15 ◦ -

Entire model D.F. 18 5
(all families) χ2 4,350.03 *** 645.04 ***
◦ p ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001

5.2 (RQ2) What are the most influential features of our
models of timeout builds?

Approach. First, we estimate the importance of each family
of feature(s) using the Wald χ2 maximum likelihood (a.k.a.,
“chunk”) tests [43]. The Wald χ2 value indicates whether
the model is statistically different from the same model in
the absence of a given independent family of feature(s).
The higher the Wald χ2 value, the greater the explanatory
power of the feature family in identifying timeout builds.
While analyzing feature families allows understanding the
collective impact of feature families on timeout builds, ana-
lyzing individual features allows understanding the specific
contribution of each feature to timeout builds. Thus, we
analyze the Wald χ2 values of individual features as well.

Furthermore, we complement our analysis by plotting
response curves16 for the most important features to analyze
the trend of the probability of a CI build timing out as the
feature value varies. All other features are held constant
at “typical” values, i.e., median for numeric features and
mode for categorical features. These plots also show the 95%
confidence intervals of the probabilities that are calculated
based on 1,000 bootstrap iterations.

Results. Table 3 shows Wald χ2 values for each of the
families of features of our model. Note that the results
are shown in two columns. The Overall column shows the
explanatory power of all of the degrees of freedom that
have been allocated to a family, while the Nonlinear column
shows the explanatory power that the additional degrees of
freedom provide. If no additional degrees of freedom have
been allocated to a family, a dash (-) symbol is shown in the
nonlinear column. The table shows that the ratio of the Wald
χ2 of all the nonlinear degrees of freedom to that of the en-
tire model is 645.04

4,350.03 = 0.15, indicating that the magnitude
of the contribution of additional degrees of freedom to our
model is substantial and statistically significant (p < 0.001).
Moreover, the two families (i.e., build history and timeout
tendency) that are allocated additional degrees of freedom
contribute a significant amount of explanatory power.

Observation 4: The build history family is the most
important family for explaining the likelihood of timeout
builds. Table 3 shows that the build history family has the
highest Wald χ2 value. Furthermore, the ratio of the Wald

16https://cran.r-project.org/web/packages/rms/rms.pdf

TABLE 4: Importance of features.

Family Feature Overall Nonlinear

Bu
ild

hi
st

or
y recent build D.F 1 -

status χ2 1,215.49 *** -

timeout ratio D.F 2 1
χ2 739.36 *** 287.02 ***

recent build D.F 2 1
duration χ2 133.69 *** 128.98 ***

Ti
m

eo
ut

te
nd

en
cy author tendency D.F 3 2

χ2 12.16 ** 11.74 **

file tendency D.F 2 1
χ2 8.89 * 8.22 **

Q
ue

ue
d

ti
m

e queued month D.F 1 -
χ2 2.64 * -

queued day D.F 1 -
χ2 2.83 ◦ -

queued hour D.F 1 -
χ2 0.84 ◦ -

queued minute D.F 1 -
χ2 0.55 ◦ -

A
ut

ho
r

ex
pe

ri
-

en
ce

changes to D.F 1 -
related files χ2 1.67 ◦ -
changes to D.F 1 -
any file χ2 0.42 ◦ -

Si
ze

deletions D.F 1 -
χ2 0.11 ◦ -

insertions D.F 1 -
χ2 0.05 ◦ -

◦ p ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001

0.00

0.01

0.02

0.03

10-3 10-2 10-1 100 101 102

Recent build duration (minutes)

Ti
m

eo
ut

 P
ro

ba
bi

lit
y

Adjusted to:queued_month=6 queued_day=2 queued_hour=16 queued_min=28 most_recent_label=0 timeout_ratio=0.002671 deletions=6 insertions=16 author_tedency=0 files_tedency=0 changes_to_related_files=12 changes_to_any_file=2186

Fig. 3: Build duration vs. the probability of timing out.

χ2 of build history to that of the entire model is 3,063.19
4,350.03 =

0.70, i.e., the build history family is the only family that can
explain 70% of the variance of our model.

Furthermore, we show the importance of individual fea-
tures in Table 4. The table shows that the recent build status,
timeout ratio, and recent build duration are the most impor-
tant features in the model. This indicates that projects with
past timeout builds are more likely to accrue timeout builds.
In fact, CI builds are often restarted in response to timeout
builds [9]. Doing so without systematically addressing the
cause of such timeouts may result in consecutive timeouts.
To better understand the underlying relationship between
past and future timeouts, we conduct a longitudinal analysis
of the incidences of timeout builds in Section 6.

The response curves corresponding to build history fea-
tures are shown in Fig. 3 and Fig. 4. Fig. 3 shows the
response curve for the direction of the relationship between
the duration of the most recent build and the probability
of a CI build timing out. Accordingly, as the duration of
the recent build increases, the probability of the current
build timing out increases. While this appears to be a weak
relationship in the figure (when compared to the strongest
features of our model), the chunk test for this feature, as
shown in Table 4, yields an explanatory power of 133.69 out

https://cran.r-project.org/web/packages/rms/rms.pdf

8

0.0

0.1

0.2

0.3

0.0 0.1 0.2 0.3 0.4 0.5
Timeout ratio

Ti
m

eo
ut

 P
ro

ba
bi

lit
y

Adjusted to:queued_month=6 queued_day=2 queued_hour=16 queued_min=28 most_recent_label=0 most_recent_duration=6.045 deletions=6 insertions=16 author_tedency=0 files_tedency=0 changes_to_related_files=12 changes_to_any_file=2186

Fig. 4: Timeout ratio vs. the probability of builds timing out.

of 4,350.03, with a significant p-value (< 0.001).
Fig. 4 shows that as the timeout ratio increases, the

probability of the current build timing out increases expo-
nentially. This suggests that projects that experienced a high
proportion of timeouts in the past will likely continue to
suffer from a high rate of timeouts in the future. Note that
the 95% confidence intervals are narrow for small values of
the explanatory features but tend to broaden as the feature
values increase. Having broader confidence intervals does
not invalidate our model, but is instead a reflection of how
the data in our sample supports the trend (i.e., there are
fewer samples supporting the broader areas of the curve).

Observation 5: Timeout tendency is the second
strongest family in explaining timeout builds. Table 4
shows that both forms of timeout tendency—file tendency
and author tendency—have contributed statistically
significant amounts of distinct explanatory power. In
particular, the importance of file tendency to the model
suggests that changes in certain files have a tendency to
lead to timeout builds. A similar trend is observed for
author tendency as well. To gain a richer perspective on
the relationship between timeout builds and file tendency,
we inspect the files that are associated with timeout builds.
Of these files, we find that 15% appear more in the change
sets of timeout builds than signal-generating builds. That
is, the number of timeout builds associated with these files
(median = 4) is greater than the number of signal-generating
builds associated with them (median = 2). For example,
Branch-SDK/src/main/java/io/branch/referral/
Defines.java is one such file in BranchMetrics/android-
branch-deep-linking-attribution project.17 This file had been
associated with 136 timeouts, which is three times more
than the number of signal-generating builds associated with
the file. A close inspection of the content of the file reveals
that the file defines several JSON18 keys, request paths,
link parameters, etc. Overall, the file provides an essential
way to access and handle various keys used in the system.
Furthermore, we find that 24 artifacts in the project rely
on those keys. Thus, such a file may have a broad impact
on the system when it is changed, which can consequently
impact the build outcome.

Lastly, we find that timeout tendency and build history
features together account for a significant portion (4,297.41)
of the model’s total explanatory power (4,350.03), providing
evidence of the gain when fitting the model only by consid-
ering strong families of features.

17https://github.com/BranchMetrics/
android-branch-deep-linking-attribution

18https://www.json.org/json-en.html

Fig. 5: An example of builds timeline.

Observation 6: Some observed features do not play a
significant role in identifying CI builds that are likely to
time out. The families of queued time, author experience,
and size do not significantly contribute to the explanatory
power of our model compared to the remaining two fam-
ilies. The family of features capturing size has the least
importance to the model. Table 3 shows Wald χ2 values
for the aforementioned families; the ratio of the Wald χ2

of the family to the entire model is 6.79
4,350.03 = 0.0015,

1.95
4,350.03 = 0.0004, and 0.15

4,350.03 = 0.00003 for queued time,
author experience, and size-related features, respectively.

Timeout builds are strongly associated with the
project build history and timeout tendency. In con-
trast, queued time, author experience, and size are
weakly associated with timeout builds.

Model re-evaluation. Our Observation 4 shows that the
build history features have a strong explanatory power of
our model. Hence, we build naı̈ve baseline models for the
three features of the build history family, and compare the
AUROC of these baseline models with our initial model
discussed in Section 5.1. Firstly, regarding the naı̈ve base-
line for the recent build status, it posits that the current
build status will mirror the previous one. This approach
yields an AUROC (Area Under the Receiver Operating
Characteristic curve) of 0.7622. Secondly, the naı̈ve baseline
for the timeout ratio predicts a current build will timeout if
the project’s historical timeout ratio surpasses 0.5, achieving
an AUROC of 0.7212. Lastly, our naı̈ve baseline for recent
build duration assumes a current build will timeout if the
duration of its predecessor exceeds CircleCI’s standard time
limit (ten minutes).7 This method results in an AUROC of
0.5. indicating a prediction no better than random chance.
This baseline analysis highlights that our model’s perfor-
mance (AUROC of 0.939) surpasses above baselines.

6 LONGITUDINAL ANALYSIS

The interpretation of our model (Section 5.2) indicates that
the project build history is a strong indicator of whether
a build will time out or not. To better understand this
chronological relationship between timeouts, we perform a
longitudinal analysis of the occurrences of timeouts.
Approach. To structure our longitudinal analysis, we take
inspiration from recent studies of build breakages [31, 44],
which achieve substantial improvements by treating con-
secutive breakages (i.e., those whose prior build was also
broken) differently than novel breakages (i.e., those whose
prior build was not broken). Similarly, we classify timeout
builds as either isolated or clustered. Fig. 5 exemplifies each
form. In the figure, circles denoted with an S represent
signal-generating builds (either passing or failing), while

https://github.com/BranchMetrics/android-branch-deep-linking-attribution
https://github.com/BranchMetrics/android-branch-deep-linking-attribution
https://www.json.org/json-en.html

9

101 102

Number of timeout builds

Median = 2 builds
80th percentile = 6 builds

(a) Number of builds in timeout clusters.

10 1 100 101 102 103 104

Number of hours

Median = 24 hours
63th percentile = 48 hours

(b) Duration of builds in timeout clusters.

Fig. 6: The number and duration of a timeout cluster.

circles denoted with a T represent timeout builds. The first
three timeout builds form clustered timeout builds. The last
two timeout builds in the timeline are isolated timeout builds;
they occur in between two signal-generating builds.

To analyze clustered timeout builds, we compute the
number of timeout builds that compose a cluster as well as
the time duration of the builds in the cluster. For example,
the cluster annotated in Fig. 5 is composed of T1, T2, and
T3; hence, the number of timeout builds in the cluster is
three. This cluster’s time duration is the time between the
moment that the first timeout in the cluster is observed and
the moment the next signal-generating build is observed,
i.e., the time between the end of T1 and the end of S3.

To analyze isolated timeout builds, we examine how
close an isolated timeout build is to another timeout build
(either a cluster or an isolated one), i.e., given an isolated
timeout, we want to analyze the distance to the closest
timeout to this isolated timeout. We measure the distance
using the number of signal-generating builds between the
isolated timeout and the closest timeout. Also, we analyze
the time elapsed between an isolated timeout build and its
closest timeout build. For example, consider the isolated
timeout T4 in Fig. 5. The closest timeout build to T4 is T5,
which is also an isolated timeout. T5 is one build away from
T4; hence, the number of builds between the two timeouts
is one. The time duration until T5 has occurred is measured
by the time difference between the ends of T4 and T5.

Results. Our two main observations are as follows.
Observation 7: The majority (64.03%) of timeout builds

in our dataset occur in clusters. Fig. 6a shows the dis-
tribution of the number of builds that compose a timeout
cluster. The figure shows that although timeout clusters are
composed of a median of two builds, 20% of the clusters
are composed of at least six consecutive timeouts (see the
80th percentile). Fig. 6b shows the distribution of the du-
ration of timeout clusters. Accordingly, it takes a median
of 24 hours before a signal-generating build occurs. More
extremely, we find that it takes at least 48 hours in 37% of
the timeout clusters (see the 63th percentile). For example,
the cptactionhank/docker-atlassian-confluence project19 en-
countered a cluster of 14 consecutive timeout builds, and it
took more than six days for the timeouts to subside.

19https://github.com/cptactionhank/docker-atlassian-confluence

100 101 102 103

Number of signal-generating builds

Median = 4 builds

(a) Distance (number of builds) between an
isolated timeout and the closest timeout.

100 101 102

Number of hours

Median = 5 hour and 30 minutes

(b) Time difference (hours) between an iso-
lated timeout and the closest timeout.

Fig. 7: The distance and time difference between an isolated
timeout and the closest timeout.

Observation 8: Isolated timeout builds are often
close to another timeout build. Fig. 7a shows the
distribution of the number of builds between an isolated
timeout and its closest timeout, and accordingly, the
median is four builds. Furthermore, Fig. 7b shows the
time difference between two timeouts, one of which is
an isolated timeout. Indeed, the closest timeout to an
isolated timeout build occurs in less than a day (i.e., five
hours and 30 minutes) on the median. Examples of such
isolated timeout builds can be found in the spotify/helios
project.20 The project encountered timeout builds in less
than an hour (in the extreme case) after an isolated timeout
build. Similar cases can be observed in other projects,
such as cptactionhank/docker-atlassian-confluence,19

palantir/atlasdb,14 and onyx-platform/onyx.21

The majority (64.03%) of timeout builds occur in
clusters. Moreover, after a timeout build, it takes a
substantial amount of time (a median of 24 hours)
until the occurrence of a signal-generating build.

7 THEMATIC ANALYSIS

The discovery of timeout clusters and the key influential
features led us to explore the root causes behind CI timeouts,
and below, we detail our approach and results.
Approach. We start by gathering links to community dis-
cussions on timeout builds in the projects that we analyzed
in our study by using GitHub search, with queries like
“ci timeout” and “circleci time out” to find relevant issues
and pull requests (PRs). By analyzing these, we aim to
understand the reasons behind CI timeouts. Our search
finds 79 issues and PRs with 406 comments related to CI
timeouts in the projects examined. After collecting relevant
documents, we perform a systematic inspection and a the-
matic analysis [47]. In the initial iteration, the first and
second authors collaboratively review titles, descriptions,
and discussion threads to create codes summarizing reasons

20https://github.com/spotify/helios
21https://github.com/onyx-platform/onyx

https://github.com/cptactionhank/docker-atlassian-confluence
https://github.com/spotify/helios
https://github.com/onyx-platform/onyx

10

for timeout builds. If the reason remains unclear, we mark it
as “Unknown.” We then identify common themes that span
across codes (which are not necessarily mutually exclusive),
linking together similar topics or underlying issues.

In the second iteration of the analysis, the first and
second authors independently assign themes to discussions,
with any disagreements resolved through discussion or, if
needed, a deciding vote by the last author. However, all
disagreements were resolved without needing this vote. To
assess the reliability of our themes and coding, we calcu-
late Cohen’s Kappa coefficient [8], which is 0.778, showing
substantial agreement [33].

Results. Our thematic analysis yields six themes, as shown
in Table 5. Each theme describes a reason for build timeouts
and the solutions that developers implemented. The total
frequency of the identified reasons is greater than 100%
because multiple themes may apply to the same case.

(T1) Efficiency Issues in Testing. In this theme, test-
ing issues cause timeouts for two reasons: First, exten-
sive tests lead to timeouts, and prompt developers to
exclude them from CI pipelines. For example, in the
cptactionhank/dockeratlassian-jira project, developers have
removed a set of long-duration tests to mitigate timeouts.22

Second, timeouts may be caused by misconfigurations or
an excessive number of tasks, which can prolong build
times. For example, the CI pipeline in the tikv/tikv project
is configured with a code coverage tool that prolongs the
build time, and is to blame for timeouts.23 The developers
initiated executing this code coverage analysis in a separate
build to reduce the prolonged build durations.

(T2) Project-Specific Issues. Timeouts arise from project-
level parameters, such as the selection of programming
languages, databases, and Android emulators. For ex-
ample, in the BranchMetrics/android-branch-deep-linking-

22https://github.com/cptactionhank/docker-atlassian-jira/
commit/dbb3b143efe02351614e6f33be4b0239991f40f2

23https://github.com/tikv/tikv/issues/3012

TABLE 5: The extracted themes for CI timeout builds.

ID Theme Frequency
(%)

Solution

(T1) Efficiency Issues
in Testing

28
(35.44%)

Remove long-running
tests and/or execute long-
running tasks in separate
builds.

(T2) Project-Specific
Issues

10
(12.65%)

Project-specific patterns.

(T3) Network Issues 8
(10.12%)

Increase the CI timeout set-
ting.

(T4) Resource
Constraints

8
(10.12%)

Induce waiting in threads
and/or processes.

(T5) Efficiency
Issues in the
CI Provider

6
(07.59%)

Restart the build.

(T6) Containerized
Environment
Issues

6
(07.59%)

Increase the CI timeout set-
ting.

(TU) Unknown 16
(20.25%)

Increase the CI timeout set-
ting.

attribution project, the selected Android emulator becomes
unresponsive, entering into infinite loops during the build
process.24 This unresponsiveness contributes to timeouts. To
avoid such timeouts, the developers changed the version of
the Android emulator they were using.

(T3) Network Issues. Another common reason for time-
out builds is due to network issues, such as incorrect net-
work settings, API network errors, and server timeouts.
For instance, in the spacetelescope/notebooks project, slow
network requests led to CI timeouts.25 Attempts to address
this included extending the timeout limit from 10 to 20
minutes, which, while reducing timeouts, is not ideal as it
can increase costs due to longer billable service usage.

(T4) Resource Constraints. Timeout builds can be at-
tributed to resource constraints, such as limitations in
RAM and/or CPU, or parallelism constraints that man-
ifest as race conditions. For example, in the tender-
mint/tendermint project, a statement to cause a thread to
wait (time.Sleep(time.Second)) was added to miti-
gate race conditions that otherwise lead to timeouts.26

(T5) Efficiency Issues in the CI Provider. Builds may
time out due to inefficiencies in the CI provider’s infras-
tructure. For example, in the influxdata/kapacitor project,
developers observed that certain builds running quickly on
local machines faced delays and timeouts on CircleCI.27

Similarly, in a PR within the influxdata/influxdb project,
developers noted timeouts, which were suspected to be due
to the limitations of the infrastructure on the CI provider’s
side.28 In both cases, developers were in favour of restarting
the build even though restarting without addressing the
underlying issues can waste resources [37].

(T6) Containerized Environment Challenges. Timeouts
within a containerized environment can be traced to con-
tainer maintenance and configuration issues. For example,
in the moby/libnetwork project, timeouts occurred because
the network interfaces of Docker containers were not ade-
quately cleaned up after the tests were completed.29 On the
other hand, in the Homebrew/brew project, Docker contain-
ers play a crucial role in the CI process by providing isolated
environments for the building software packages.30 This
process times out when building large software packages,
and the developers discussed the need to lift the timeout
limit.

Emergent themes of root causes for CI timeouts
range from technical challenges (T3, T4, and T6)
and testing inefficiencies (T1) to project-specific (T2)
issues and limitations with CI providers (T5).

8 THREATS TO VALIDITY

Construct Validity. We have not measured all potential
characteristics that impact timeout builds. For instance, the

24https://github.com/BranchMetrics/
android-branch-deep-linking-attribution/pull/400

25https://github.com/spacetelescope/notebooks/issues/87
26https://github.com/tendermint/tendermint/issues/846
27https://github.com/influxdata/kapacitor/pull/1631
28https://github.com/influxdata/influxdb/pull/8961
29https://github.com/moby/libnetwork/pull/1325
30https://github.com/Homebrew/brew/issues/10597

https://github.com/cptactionhank/docker-atlassian-jira/commit/dbb3b143efe02351614e6f33be4b0239991f40f2
https://github.com/cptactionhank/docker-atlassian-jira/commit/dbb3b143efe02351614e6f33be4b0239991f40f2
https://github.com/tikv/tikv/issues/3012
https://github.com/BranchMetrics/android-branch-deep-linking-attribution/pull/400
https://github.com/BranchMetrics/android-branch-deep-linking-attribution/pull/400
https://github.com/spacetelescope/notebooks/issues/87
https://github.com/tendermint/tendermint/issues/846
https://github.com/influxdata/kapacitor/pull/1631
 https://github.com/influxdata/influxdb/pull/8961
https://github.com/moby/libnetwork/pull/1325
https://github.com/Homebrew/brew/issues/10597

11

performance characteristics of the CI server, such as paral-
lelism and scalability, are not included in our models. Such
features may better explain the likelihood of timeout builds
than the features we use. However, such information is not
available publicly. To mitigate this, we select a set of 19
features spanning five dimensions of CI builds by consult-
ing the related literature on the build outcome prediction
[7, 40, 44] and defect prediction [52].
Internal Validity. We may have missed confounding fac-
tors that could impact our interpretations. For example,
we observe that the longer the duration of the previous
build, the higher the likelihood of CI builds timing out,
but this might reflect limited CI service resources, making
the observed relationship coincidental. Additionally, there
could be overlooked implicit aspects of builds, such as
the CI provider’s workload capacity (not available for us
via public APIs/datasets) or configurable time limits, that
might provide further context to our model.

Also, the time limit (the no_output_timeout setting),
which developers can set, may have a relationship to the
probability of timeout builds; when a project is assigned a
larger time limit, the likelihood of encountering build time-
outs naturally decreases. We collect no_output_timeout
values for each build in our dataset (assuming the default
time limit for the build that does not have the configuration
explicitly set). Upon rerunning our models, we discover
that the no_output_timeout settings do not significantly
explain the model’s outcomes. For a more detailed explo-
ration of this aspect, we direct interested readers to our
Online Appendix G,10 which contains an in-depth overview
of this updated model. Note that the goal of our study is
to identify features that provide insights into the project’s
overall health in terms of timeouts, irrespective of whether
those features share causal or correlational relationships
with timeout builds. We encourage future research to ex-
plore causal links between our features and timeout builds.

Our decision to use statistical models was made because
of their ability to elucidate the influences of the set of
studied features on timeout builds. We recognize that this
choice might introduce bias, especially when compared to
visually intuitive and interpretable machine-learning mod-
els, such as decision trees. For further analysis, we construct
a decision tree using the same dataset. This decision tree
does not yield substantially new insights, suggesting that
this experimental design choice is not a substantial threat
to the validity of our results. For a detailed exploration of
our decision tree analysis, we invite readers to consult our
Online Appendix H.10

External Validity. Our models are built using data from
projects that used CircleCI. As such, our results may not
generalize to other CI services. However, there is nothing in-
herently service-specific about the phenomenon of timeout
builds. Nonetheless, since we select statically-computable
and CI service-agnostic features, our replication package10

can be used to accelerate replication studies for other CI
services (e.g., GitHub Actions, which is also known to be a
popular CI service [19]). We select a sample of the 24 most
timeout-prone projects for our analysis. As such, our results
may not be generalized to all CircleCI users. We apply a set
of conservative filters to exclude early-stage or immature
projects where timeout builds are less relevant.

9 RELATED WORK

A popular line of prior work focused on the difficulties
of adopting CI services [16, 17, 18, 29, 57]. For example,
Widder et al. [57] surveyed 132 developers and interviewed
12 developers, and reported several limitations in Travis CI,
such as slow feedback, long wait times in the queue, and
other resource constraints, including memory, disk space,
and available build time. Also, Hilton et al. [29] surveyed
523 developers worldwide, and reported that 38% of them
found overly long build durations as a barrier in CI. Ghaleb
et al.’s [17] study is perhaps the most closely related work.
Their study focused on the characteristics associated with
long-duration CI builds by examining 104,442 Travis CI
builds across 67 GitHub projects. Their investigation re-
vealed that builds are more likely to take longer if they
occur on weekdays or during daytime hours, and they
discovered that 40% of these builds exceed 30 minutes.
Moreover, they built a model to distinguish between long-
duration and short-duration builds in Travis CI, identifying
the fast_finish setting as a key feature. That said, our
work differs from that of prior work by shifting the focus
to examine a distinct type of long-running builds—those
resulting in timeouts without providing a clear signal.

Previous research proposed methods to predict build
failures using build history and change set features [7,
27, 31, 45]. For instance, Hassan and Wang [27] used past
build characteristics for predictions, while Chen et al. [7]
introduced an adaptive model that adjusts based on the
outcome of the last build.

Other researchers proposed techniques to reduce the
time-to-feedback by skipping builds that are unnecessary
[1, 32]. For example, Abdalkareem et al. [1] inspected 1,813
commits that developers flagged to skip the build. The
authors identified the reasons for skipping CI builds, and
proposed a rule-based method (CI-Skipper) that automati-
cally identifies the commits that could be CI skipped.

Other work investigated test case granularity solutions
to reduce build time [13, 35, 36, 40]. Pan and Pradel [40] pre-
sented a test suite-level failure prediction approach, which
predicts whether a particular code change would lead to
a build failure. Other studies [2, 53] introduced test case
prioritizing methods to rank test cases by their tendency
to lead to build failures, and executed the test cases in the
order of highest tendency to the least.

Our study complements these studies by specifically
focusing on timeout builds. Recent studies [9, 14] have also
raised concerns about timeouts. Gallaba et al. [14] identified
17,917 timeout builds across 936 GitHub projects; they men-
tioned that determining if a build will timeout is a form of
the halting problem [54]. Our study adds to prior work by
explicitly focusing on characterizing timeouts.

10 IMPLICATIONS

Project build history and timeout clusters can provide
useful information to proactively allocate resources (for
CI providers) and minimize CI waste (for CI consumers).
Observation 5 shows that the history of a project’s builds
is the strongest indicator of whether a build will time out.
Additionally, we found that timeout builds occur in clusters
(Observation 7), which generates considerable amounts of

12

wasted build time. By leveraging these project tendencies
and timeout patterns, CI providers can anticipate timeout
builds and take appropriate action. For example, if addi-
tional resources are available, it may be more cost-effective
to proactively allocate them to builds with a high likelihood
of timing out in order to mitigate such issues. This is by no
means a simple action since one cannot know in advance
the quantities of additional resources required to allow the
problematic build to terminate with a pass or fail signal
[14]; however, it is likely that timeouts will be retried [9],
which will likely cascade into a series of timeout builds (i.e.,
clusters), generating more waste than a proactive increment
to the resources of the initial build would. After a timeout
build, 24 hours are taken (on median) for a project to see
a passing or failing build. Moreover, clusters of timeouts
suggest a substantial problem, like a shared environmental
condition or code change that introduces timeouts, rather
than just flakiness. We recommend developers investigate
the root causes (detailed in our Section 7)) to better under-
stand and prevent future timeouts.

Prioritizing files that are prone to build timeouts
can optimize resource allocation and may help to avoid
incidences of timeout builds. Observation 4 indicates that
certain file characteristics can increase the likelihood of a CI
build timing out. By inspecting examples of timeout builds,
we find that some files are more often implicated in Time-
outs. This may indicate that timeout builds are localized,
and are often triggered by the changes to a small fraction
of project files. Upon a closer inspection of our dataset,
we find cases where developers make changes to certain
files to fix the issue of timeouts, e.g., commenting out long-
running test cases in test files,31 adjusting test settings (such
as changing the android emulator version32), and changing
CI configurations.33 We provide more such examples in
Section 7 and our Online Appendix J.10 Hence, a tool that
ranks such timeout-prone files based on the strength of their
association with builds that time out may have a potential
impact. For example, a tool may flag a change to a file if it
is likely to eventually lead to a timeout build, letting project
maintainers direct their efforts to optimize components that
pose the most elevated risk for timeout builds. This strat-
egy could prioritize the files that are frequently associated
with timeouts. Specifically, files that have a consistent track
record of leading to timeouts across multiple builds ought
to be placed at the top of the prioritization list for analysis.
In addition to raising developer awareness when changing
timeout-prone files, such tools could guide developers to
make more informed decisions about allocating resources to
mitigate timeouts.

Researchers should propose approaches for predicting
timeout builds to assist developers in preventing time-
outs. Observations 1 and 2 show that our model achieves
a high level of discriminatory power (AUROC=0.939), is
well calibrated in terms of risk estimates (Brier score of
0.008), and is highly stable for explaining the incidences of

31https://github.com/cptactionhank/docker-atlassian-confluence/
commit/e81db60ee6cbee71bb427aa015afb3b9762d029c

32https://github.com/BranchMetrics/
android-branch-deep-linking-attribution/pull/400

33https://github.com/autoreject/autoreject/pull/194/commits/
92b388594d3c1cb2678c1f189940b84cfc9b9f5c

timeouts. However, our primary goal in this paper is to use
statistical models to characterize and understand timeout
builds rather than to predict future timeouts. We encourage
researchers to build upon our findings (the important fea-
tures we identified in Observations 4 and 5 and the temporal
aspects in the analysis of build data in Observations 7 and
8), as well as those in the context of build failure prediction,
to develop more powerful prediction models for timeout
builds. For example, prior work (e.g., [7]) built machine-
learning models to predict build failures, but our findings
suggest that such approaches could be extended to predict
timeout builds.

11 CONCLUSION

This paper examines timeout builds in 24 highly prone
open-source projects using CircleCI. Various project char-
acteristics, including build history, queue time, and author
experience, are analyzed using statistical models to under-
stand their impact on timeout occurrences. Our findings
highlight that the most influential factors are build history
and timeout tendencies with 64.03% of timeouts occurring
consecutively and a 24-hour delay on average before the
next build. Our thematic analysis of GitHub discussions
reveals root causes for timeouts ranging from testing ineffi-
ciencies and resource limitations to CI provider issues.

REFERENCES

[1] R. Abdalkareem, S. Mujahid, E. Shihab, and J. Rilling,
“Which commits can be ci skipped?” Transactions on
Software Engineering, vol. 47, 2019.

[2] M. Bagherzadeh, N. Kahani, and L. Briand, “Rein-
forcement learning for test case prioritization,” IEEE
Transactions on Software Engineering, vol. 48, 2021.

[3] A. O. Balogun, S. Basri, J. A. Said, V. E. Adeyemo, A. A.
Imam, and A. O. Bajeh, Software defect prediction: analy-
sis of class imbalance and performance stability. School of
Engineering, Taylor’s University, 2019.

[4] G. W. Brier, Verification of forecasts expressed in terms
of probability. American Meteorological Society, 1950,
vol. 78.

[5] G. Cavalcanti, P. Borba, G. Seibt, and S. Apel, “The im-
pact of structure on software merging: semistructured
versus structured merge,” in Proceedings of the Inter-
national Conference on Automated Software Engineering,
2019.

[6] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer, “Smote: synthetic minority over-sampling
technique,” Journal of artificial intelligence research,
vol. 16, 2002.

[7] B. Chen, L. Chen, C. Zhang, and X. Peng, “Buildfast:
History-aware build outcome prediction for fast feed-
back and reduced cost in continuous integration,” in
Proceedings of the 35th International Conference on Auto-
mated Software Engineering, 2020.

[8] J. Cohen, “Weighted kappa: Nominal scale agreement
provision for scaled disagreement or partial credit.”
Psychological Bulletin, vol. 70, 1968.

[9] T. Durieux, C. Le Goues, M. Hilton, and R. Abreu,
“Empirical study of restarted and flaky builds on travis

https://github.com/cptactionhank/docker-atlassian-confluence/commit/e81db60ee6cbee71bb427aa015afb3b9762d029c
https://github.com/cptactionhank/docker-atlassian-confluence/commit/e81db60ee6cbee71bb427aa015afb3b9762d029c
https://github.com/BranchMetrics/android-branch-deep-linking-attribution/pull/400
https://github.com/BranchMetrics/android-branch-deep-linking-attribution/pull/400
https://github.com/autoreject/autoreject/pull/194/commits/92b388594d3c1cb2678c1f189940b84cfc9b9f5c
https://github.com/autoreject/autoreject/pull/194/commits/92b388594d3c1cb2678c1f189940b84cfc9b9f5c

13

ci,” in Proceedings of the 17th International Conference on
Mining Software Repositories, 2020.

[10] P. M. Duvall, S. Matyas, and A. Glover, Continuous
integration: improving software quality and reducing risk.
Pearson Education, 2007.

[11] B. Efron, “How biased is the apparent error rate of
a prediction rule?” Journal of the American statistical
Association, vol. 81, 1986.

[12] J. G. Eisenhauer, Degrees of Freedom in Statistical Infer-
ence. Springer Berlin Heidelberg, 2011.

[13] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for
improving regression testing in continuous integration
development environments,” in Proceedings of the 22nd
SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, 2014.

[14] K. Gallaba, M. Lamothe, and S. McIntosh, “Lessons
from eight years of operational data from a continuous
integration service: an exploratory case study of cir-
cleci,” in Proceedings of the 44th International Conference
on Software Engineering, 2022.

[15] K. Gallaba and S. McIntosh, “Use and misuse of con-
tinuous integration features: An empirical study of
projects that (mis) use travis ci,” Transactions on Software
Engineering, vol. 46, 2018.

[16] T. A. Ghaleb, S. Hassan, and Y. Zou, “Studying the
interplay between the durations and breakages of con-
tinuous integration builds,” Transactions on Software
Engineering, vol. 49, 2022.

[17] T. A. Ghaleb, D. A. Da Costa, and Y. Zou, “An empirical
study of the long duration of continuous integration
builds,” Empirical Software Engineering, vol. 24, 2019.

[18] T. A. Ghaleb, D. A. da Costa, Y. Zou, and A. E. Hassan,
“Studying the impact of noises in build breakage data,”
Transactions on Software Engineering, vol. 47, 2019.

[19] M. Golzadeh, A. Decan, and T. Mens, “On the rise and
fall of ci services in github,” in International Conference
on Software Analysis, Evolution and Reengineering. IEEE,
2022.

[20] G. Gousios, M. Pinzger, and A. v. Deursen, “An ex-
ploratory study of the pull-based software develop-
ment model,” in Proceedings of the 36th international
conference on software engineering, 2014.

[21] J. A. Hanley and B. J. McNeil, “The meaning and use of
the area under a receiver operating characteristic (roc)
curve.” Radiology, vol. 143, 1982.

[22] N. R. Hansen and A. Sokol, “Degrees of freedom
for nonlinear least squares estimation,” arXiv preprint
arXiv:1402.2997, 2014.

[23] F. E. Harrell et al., Regression modeling strategies: with ap-
plications to linear models, logistic regression, and survival
analysis, 2001, vol. 608.

[24] F. E. Harrell Jr, K. L. Lee, R. M. Califf, D. B. Pryor,
and R. A. Rosati, “Regression modelling strategies for
improved prognostic prediction,” Statistics in medicine,
vol. 3, 1984.

[25] F. E. Harrell Jr, K. L. Lee, D. B. Matchar, and T. A.
Reichert, “Regression models for prognostic prediction:
advantages, problems, and suggested solutions.” Can-
cer treatment reports, vol. 69, 1985.

[26] T. Hasanin and T. Khoshgoftaar, “The effects of random
undersampling with simulated class imbalance for big

data,” in international conference on information reuse and
integration (IRI), 2018.

[27] F. Hassan and X. Wang, “Change-aware build predic-
tion model for stall avoidance in continuous integra-
tion,” in Proceedings of the International Symposium on
Empirical Software Engineering and Measurement, 2017.

[28] H. He and E. A. Garcia, “Learning from imbalanced
data,” IEEE Transactions on knowledge and data engineer-
ing, vol. 21, 2009.

[29] M. Hilton, N. Nelson, D. Dig, T. Tunnell, D. Marinov
et al., Continuous integration (CI) needs and wishes for
developers of proprietary code. Corvallis, OR : Oregon
State University, Dept. of Computer Science, 2016.

[30] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and
D. Dig, “Usage, costs, and benefits of continuous in-
tegration in open-source projects,” in Proceedings of
the 31st International Conference on Automated Software
Engineering, 2016.

[31] X. Jin and F. Servant, “A cost-efficient approach to
building in continuous integration,” in Proceedings of
the 42nd International Conference on Software Engineering,
2020.

[32] ——, “Which builds are really safe to skip? maximizing
failure observation for build selection in continuous
integration,” Journal of Systems and Software, vol. 188,
2022.

[33] J. R. Landis and G. G. Koch, “The measurement of
observer agreement for categorical data,” biometrics,
1977.

[34] M. R. Lavery, P. Acharya, S. A. Sivo, and L. Xu, “Num-
ber of predictors and multicollinearity: What are their
effects on error and bias in regression?” Communications
in Statistics-Simulation and Computation, vol. 48, 2019.

[35] J. Liang, S. Elbaum, and G. Rothermel, “Redefining
prioritization: continuous prioritization for continuous
integration,” in Proceedings of the 40th International Con-
ference on Software Engineering, 2018.

[36] M. Machalica, A. Samylkin, M. Porth, and S. Chandra,
“Predictive test selection,” in Proceedings of the 41st
International Conference on Software Engineering: Software
Engineering in Practice. IEEE, 2019.

[37] R. Maipradit, D. Wang, P. Thongtanunam, R. G. Kula,
Y. Kamei, and S. McIntosh, “Repeated Builds During
Code Review: An Empirical Study of the OpenStack
Community,” in Proc. of the International Conference on
Automated Software Engineering, 2023.

[38] S. McIntosh and Y. Kamei, “Are Fix-Inducing Changes
a Moving Target? A Longitudinal Case Study of Just-
In-Time Defect Prediction,” Transactions on Software En-
gineering, vol. 44, 2018.

[39] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan,
“An empirical study of the impact of modern code re-
view practices on software quality,” Empirical Software
Engineering, vol. 21, 2016.

[40] C. Pan and M. Pradel, “Continuous test suite failure
prediction,” in Proceedings of the 30th SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, 2021.

[41] K. Pearson, “Contributions to the mathematical theory
of evolution,” Philosophical Transactions of the Royal So-
ciety of London. A, vol. 185, 1894.

[42] J. Prusa, T. M. Khoshgoftaar, D. J. Dittman, and

14

A. Napolitano, “Using random undersampling to al-
leviate class imbalance on tweet sentiment data,” in
2015 IEEE international conference on information reuse
and integration, 2015.

[43] J. N. Rao and A. J. Scott, “The analysis of categor-
ical data from complex sample surveys: chi-squared
tests for goodness of fit and independence in two-
way tables,” Journal of the American statistical association,
vol. 76, no. 374, pp. 221–230, 1981.

[44] I. Saidani, A. Ouni, M. Chouchen, and M. W. Mkaouer,
“Predicting continuous integration build failures using
evolutionary search,” Information and Software Technol-
ogy, vol. 128, 2020.

[45] I. Saidani, A. Ouni, and M. W. Mkaouer, “Improving
the prediction of continuous integration build failures
using deep learning,” Automated Software Engineering,
vol. 29, 2022.

[46] T. Saito and M. Rehmsmeier, “The precision-recall plot
is more informative than the roc plot when evaluating
binary classifiers on imbalanced datasets,” PloS one,
vol. 10, 2015.

[47] C. B. Seaman, “Qualitative methods in empirical stud-
ies of software engineering,” Transactions on software
engineering, vol. 25, 1999.

[48] C. Spearman, The proof and measurement of association
between two things. Appleton-Century-Crofts, 1961.

[49] D. Ståhl and J. Bosch, “Experienced benefits of continu-
ous integration in industry software product develop-
ment: A case study,” in Proceedings of the 12th IASTED
International Conference on Software Engineering, 2013.

[50] ——, “Industry application of continuous integration
modeling: a multiple-case study,” in Proceedings of
the 38th International Conference on Software Engineering
Companion, 2016.

[51] X. Tan, M. Zhou, and Z. Sun, “A first look at good
first issues on github,” in Proceedings of the 28th Joint
Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering,
2020.

[52] C. Tantithamthavorn, S. McIntosh, A. E. Hassan,
A. Ihara, and K. Matsumoto, “The impact of misla-
belling on the performance and interpretation of defect
prediction models,” in Proceedings of the 37th Interna-
tional Conference on Software Engineering, 2015.

[53] S. W. Thomas, H. Hemmati, A. E. Hassan, and
D. Blostein, “Static test case prioritization using topic
models,” Empirical Software Engineering, vol. 19, 2014.

[54] A. Turing, “On computable numbers, with an applica-
tion to the entscheidungsproblem. a correction,” Pro-
ceedings of the London, 1938.

[55] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov,
“Quality and productivity outcomes relating to contin-
uous integration in github,” in Proceedings of the 10th

joint meeting on foundations of software engineering, 2015.
[56] C. Vassallo, S. Proksch, H. C. Gall, and M. Di Penta,

“Automated reporting of anti-patterns and decay in
continuous integration,” in Proceedings of the 41st In-
ternational Conference on Software Engineering, 2019.

[57] D. G. Widder, M. Hilton, C. Kästner, and B. Vasilescu,
“A conceptual replication of continuous integration
pain points in the context of travis ci,” in Proceedings of
the 27th Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software
Engineering, 2019.

[58] F. Zampetti, G. Bavota, G. Canfora, and M. Di Penta, “A
study on the interplay between pull request review and
continuous integration builds,” in Proceedings of the 26th
International Conference on Software Analysis, Evolution
and Reengineering, 2019.

[59] F. Zampetti, C. Vassallo, S. Panichella, G. Canfora,
H. Gall, and M. Di Penta, “An empirical character-
ization of bad practices in continuous integration,”
Empirical Software Engineering, vol. 25, 2020.

Nimmi Weeraddana is a Ph.D. candidate in the
Cheriton School of Computer Science at the
University of Waterloo, Canada. Her research
interests include build systems, mining software
repositories, and diversity in software engineer-
ing. Find more about her at https://rebels.cs.
uwaterloo.ca/member/nimmi.html.

Mahmoud Alfadel is a postdoctoral researcher
in the Cheriton School of Computer Science at
the University of Waterloo. His research inter-
ests include mining software repositories, em-
pirical software engineering, software ecosys-
tems, and release engineering. You can find
more about him at https://rebels.cs.uwaterloo.ca/
member/mahmoud.html.

Shane McIntosh is an associate professor in
the Cheriton School of Computer Science at the
University of Waterloo, where he leads the Soft-
ware Repository Excavation and Build Engineer-
ing Labs (Software REBELs). In his research,
Shane uses empirical methods to study soft-
ware build systems, release engineering, and
software quality: https://rebels.cs.uwaterloo.ca/.

https://rebels.cs.uwaterloo.ca/member/nimmi.html
https://rebels.cs.uwaterloo.ca/member/nimmi.html
https://rebels.cs.uwaterloo.ca/member/mahmoud.html
https://rebels.cs.uwaterloo.ca/member/mahmoud.html
https://rebels.cs.uwaterloo.ca/

	Introduction
	Continuous Integration (CI) and Timeouts
	The Prevalence of CI timeout builds
	The Frequency of Timeout Builds
	The Quantity of Timeout Waste

	Study Design
	Study Results
	(RQ1) How well can our models explain the incidences of timeout builds?
	(RQ2) What are the most influential features of our models of timeout builds?

	Longitudinal Analysis
	Thematic Analysis
	Threats to Validity
	Related Work
	Implications
	Conclusion
	Biographies
	Nimmi Weeraddana
	Mahmoud Alfadel
	Shane McIntosh

