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Mitigating the Uncertainty and Imprecision of
Log-Based Code Coverage Without Requiring

Additional Logging Statements
Xiaoyan Xu, Filipe R. Cogo, Member, IEEE, Shane McIntosh, Senior Member, IEEE

Abstract—Understanding code coverage is an important precursor to software maintenance activities (e.g., better testing). Although
modern code coverage tools provide key insights, they typically rely on code instrumentation, resulting in significant performance
overhead. An alternative approach to code instrumentation is to process an application’s source code and the associated log traces in
tandem. This so-called “log-based code coverage” approach does not impose the same performance overhead as code
instrumentation. Chen et al. proposed LOGCOCO — a tool that implements log-based code coverage for JAVA. While LOGCOCO

breaks important new ground, it has fundamental limitations, namely: uncertainty due to the lack of logging statements in conditional
branches, and imprecision caused by dependency injection. In this study, we propose LOG2COV, a tool that generates log-based code
coverage for programs written in PYTHON and addresses uncertainty and imprecision issues. We evaluate LOG2COV on three large
and active open-source systems. More specifically, we compare the performance of LOG2COV to that of COVERAGE.PY, an
instrumentation-based coverage tool for PYTHON. Our results indicate that 1) LOG2COV achieves high precision without introducing
runtime overhead; and 2) uncertainty and imprecision can be reduced by up to 11% by statically analyzing the program’s source code
and execution logs, without requiring additional logging instrumentation from developers. While our enhancements make substantial
improvements, we find that future work is needed to handle conditional statements and exception handling blocks to achieve parity with
instrumentation-based approaches. We conclude the paper by drawing attention to these promising directions for future work.

Index Terms—Static Analysis, Code coverage, Software logging
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1 INTRODUCTION

D EVELOPERS strive to understand the behavior of large
and complex software systems. To gain insights into

a system’s behavior, developers rely on software analysis
tools [20], which may suffer from shortcomings. For ex-
ample, instrumentation-based software analysis tools can
generate considerable performance overhead during the
execution of the analyzed program [11, 25, 33, 46]. In
systems that are performance sensitive and need intensive
monitoring, such as high-traffic web services and real-time
applications, instrumentation-based methods may interfere
with critical performance requirements that are essential for
the system’s functionality, and meeting implicit or explicit
Quality of Service (QoS) expectations [4, 22, 41, 42]. Adapt-
ing instrumentation-based tools across systems is also chal-
lenging because such tools are often language specific [12].
Moreover, the deployment of instrumentation-based tools is
non-trivial. In distributed systems, for instance, the deploy-
ment of instrumentation tools presents challenges due to
the need for pervasive system modifications, which crosscut
nearly every component of the system [29].

To address the aforementioned limitations in code cover-
age measurement, Chen et al. [10] proposed LOGCOCO—a
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tool to measure the code coverage of JAVA-based systems by
exploiting broadly available system execution logs. Unlike
instrumentation-based coverage tools, LOGCOCO does not
add overhead that affects the overall system’s performance
because it relies on execution logs that systems are often
already generating to, e.g., monitor system health, debug
runtime issues, and comply with legal requirements in reg-
ulated industries. Despite code coverage being traditionally
applied in the context of testing, the application context
of LOGCOCO is broader, as it can produce code coverage
measurements based on any set of execution logs and under
any execution scenario. This indicates that any software
that uses logging can potentially benefit from this approach,
particularly in scenarios where traditional instrumentation-
based methods are intrusive or infeasible.

While LOGCOCO makes an important contribution, it is
not without limitations. First, LOGCOCO’s nature of infer-
ring coverage by execution logs limits its performance to
measuring the coverage of log-sparse areas of the source
code, for which uncertainty can occur. Uncertainty refers
to the code region that cannot be determined as covered
or not covered based on the execution logs. Second, the
development paradigm of dependency injection can cause
imprecision in LOGCOCO’s coverage measurement, since de-
pendency injection dynamically modifies system execution
flows during runtime. For example, a common practice of
dependency injection in unit testing is mocking and patch-
ing, where a function can be replaced by a mocked object
and is not invoked during system execution, even though
static analysis indicates that it is. Without an understanding
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of dependency injection, LOGCOCO can yield inaccurate
coverage measurements.

In this paper, we propose LOG2COV—a log-based cov-
erage approach that aims to address the aforementioned
limitations caused by uncertainty and imprecision. In ad-
dition to these conceptual enhancements, we contribute a
prototype implementation of LOG2COV for PYTHON, which
expands the reach of log-based coverage concept to a new
programming language. We perform an exploratory eval-
uation to verify the performance of log-based coverage
measurement for PYTHON. We systematically select three
of the largest, most active and log-dense open-source sys-
tems on GITHUB as subject systems for our evaluation. We
benchmark our performance measurements in comparison
with COVERAGE.PY—a popular instrumentation-based cov-
erage tool for PYTHON. More specifically, we compare the
results of COVERAGE.PY against the results of LOG2COV
to verify the performance of the latter. Our results show
that our direct port of LOGCOCO to PYTHON achieves high
precision, recall, and F1 score. Our results also confirm
the presence of the limitations of uncertainty and impre-
cision. Armed with an empirical understanding of these
limitations, we enhance LOG2COV to mitigate uncertainty
and imprecision. We strive to reduce uncertainty without
asking developers to supply additional logging statements
in log-sparse conditional blocks. Such conditional blocks
result in uncertainty because there are no log statements
to ascertain which execution flow was invoked. We propose
a technique that incorporates program slicing [45] and data
flow analysis [1] to trace variables that are referenced within
conditional expressions, and infer their values to resolve the
expression and determine the coverage status of statements
inside conditional blocks. To address the imprecision prob-
lem, we identify the usage of dependency injection in unit
testing and intervene in the analysis of system execution
flows to correct the corresponding coverage measurement.

We evaluate our approach, which addresses uncertainty
and imprecision, by answering the following RQs:
(RQ1) To what extent can we reduce the uncertainty of

log-based code coverage?
Motivation: Log statements are not inserted every-
where. Log-sparse regions of a system can lead to un-
certainty in log-based coverage measurement. While
prior work [10] suggests inserting additional logging
statements as a solution, we aim to relax this con-
straint on users by mitigating uncertainty without
requiring changes to the system under scrutiny.
Results: Our approach resolves 1%-11% of lines
whose coverage status could not be ascertained by
execution logs alone, and it achieves 100% of accu-
racy across our subject systems.

(RQ2) To what extent can we reduce the imprecision of
log-based code coverage?
Motivation: An inaccurate coverage tool is not of
practical value. The practice of dependency injection
can cause imprecision in log-based coverage mea-
surements, since it dynamically modifies the system
execution flow during runtime. To improve the prac-
tical value of log-based coverage estimation, we set
out to mitigate the impact of dependency injection
on the precision of measurements.

Results: Our approach achieves up to 4 percentage
points improvement on the precision of LOG2COV
when dependency injection is being used, and has
no negative impact on the performance of LOG2COV
when dependency injection is not being used.

2 BACKGROUND AND RELATED WORK

In this section, we situate our work with respect to the
literature on software logging and code coverage.

2.1 Software Logging

Software logging is a popular approach to recording events
that occur while a program executes [48]. A log trace is the
text output of such a recorded event, and it is generated
by executing the log statement that is inserted into the
source code by developers [17]. During the system execu-
tion, the collected log traces are saved in log files. A logging
statement typically contains four types of components: a
logging object, a verbosity level, static texts, and dynamic
contents [9]. During the system execution, the verbosity
level (e.g. INFO, DEBUG, ERROR) determines whether a log
trace should be outputted, the dynamic contents represent
the state of the system while it is running, whereas static
texts provide a human-readable description of the logging
context (e.g., type of event).

Because of the runtime information that the log files
contain, software logging is heavily and widely used in
large enterprise applications for monitoring and debug-
ging [21]. For example, anomaly identification [40], system
monitoring [39], failure analysis [23, 35, 36, 49], and test
analysis [43] all rely on analyzing logs emitted in the execu-
tion of large-scale software systems. Moreover, the runtime
information from logs can be leveraged to complement static
analysis [31], thereby providing a more comprehensive un-
derstanding of system behavior.

Previous work has studied developers’ logging practices.
Chen et al. [8] studied five server-side projects and five
client-side projects from the APACHE Software Foundation
to assess whether the logging practices of client-side projects
are similar to those of the server-based projects. They an-
alyzed log density, which is defined as the ratio between
total lines of source code and total lines of logging code,
across those projects. They found that the pervasiveness of
logging varies from project to project. Alves and Paula [2]
explored the logging practices of 1,166 open-source PYTHON
projects that use containers. They found that over 99% of the
studied projects use the built-in PYTHON logging library,
and that the logging verbosity levels DEBUG and INFO are
used almost twice as much as WARNING and ERROR.

Yet, empirical investigations demonstrate that no well-
established logging standard exists for proprietary [14] and
open source systems [8, 48]. Researchers have made efforts
to fill this gap by suggesting where to log (i.e., specifying
where logging statements should be placed) and what to log
(i.e., specifying the information that log statements should
record). Yuan et al. [47] studied 250 randomly sampled
reported failures across five large and widely used software
systems and found that missing logging statements increase
the time to resolve failures up to 2.2 times compared to
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the average resolving time. The authors proposed ERRLOG,
a static checking tool that automatically instruments log
statements to record the error locations and error context
while searching the codebase for these kinds of exception
blocks. Zhu et. al [52] proposed LogAdvisor, which utilizes
existing logging statements to automatically learn logging
practices for where to log and uses that information to
provide developers with recommendations. He et al. [17]
carried out the first empirical study in the context of logging
statements, concentrating on the natural language descrip-
tions of those statements. They summarized three categories
of logging descriptions in logging statements, including the
description of program operation, the description of error
conditions, and the description of high-level code semantics
(i.e., variable description, function description, and branch
description).

Software logging offers a wide range of benefits, covering
the dimensions of diagnosing system failures, tracking exe-
cution status, understanding system behavior, and recording
important transactions or operations in system executions.
Yet there is no universal standard of logging. Inadequate
logging can pose negative impacts on log analysis.

2.2 Code Coverage and Instrumentation-Induced Over-
head

Code coverage is a technique to determine which code
locations (e.g., branches or statements) are executed when
a system runs under determined conditions. Code coverage
is mainly used to assess and enhance the quality of tests [51],
such as unit tests and integration tests [3, 5, 24, 30, 34].

While both open-source and proprietary tools that mea-
sure code coverage are popular and broadly available (e.g.,
JACOCO1, Semantic Designs tools2, COBERTURA3), they
typically use the same instrumentation technique, which
consists of inserting probes (either at the source code [6]
or the binary/bytecode level [28]) to capture the runtime
system behavior [46]. For example, Yang et al. [46] compared
17 coverage-based testing tools that support different lan-
guages (e.g., JAVA, C, and C++) and found that they are all
based on instrumentation. However, instrumentation causes
performance overhead, making the overall system execution
slower [16, 44]. Instrumentation-induced overhead can be
categorized as either offline, caused by the process of in-
serting the probes, or online, caused by the execution of the
probes to record the execution traces [46].

Prior research studied the performance overhead caused
by instrumentation-based code coverage tools. Such over-
head is often measured by comparing the performance
of executing tests with/without turning the coverage tool
on. Chen et al. [10] measured the overhead of JACOCO, a
commonly used JAVA coverage tool [10], and observed that
negative performance impact varies between workloads.
Nonetheless, they found that JACOCO brought a noticeable
performance overhead (greater than 8% on average) on
the System Under Test (SUT) across all benchmark tests.

1. http://www.eclemma.org/jacoco/
2. http://www.semdesigns.com/Products/TestCoverage/
3. http://cobertura.github.io/cobertura/

Holmes et al. [18] measured the performance overhead
introduced by the state-of-the-art PYTHON coverage tool
COVERAGE.PY.4 The authors measured the performance
overhead in terms of the number of test actions (e.g., method
calls) performed in a 60-second time range. As a benchmark,
the authors selected a set of PYTHON libraries as the SUT
and the generated tests by TSTL [18], a domain-specific
language for creating test harnesses. They observed that
turning off code coverage tools can lead to executing at least
10% more test actions (on average), and up to 50 times as
many test actions. The median improvement in SUTs was
2.03 times, with a mean improvement of 6.12 times as many
test actions.

The state-of-the-practice code coverage tools rely on in-
strumentation, which results in non-negligible performance
overhead for large-scale software systems.

2.3 Log-based Code Coverage

To address the performance overhead problem in code
coverage measurement, Chen et al. [10] proposed LOG-
COCO, a tool to measure code coverage using execu-
tion log traces of JAVA-based systems. LOGCOCO mea-
sures three kinds of code coverage: Must-Coverage, Must-
Not-Coverage, and May-Coverage. Must- and Must-Not-
Coverage refer to statements that are either necessarily
covered or not covered by an execution flow. May-Coverage
refers to the statements inside conditional branches at which
there is no logging statement indicating its reachability. Un-
like instrumentation-based coverage tools, LOGCOCO does
not add extra overhead that affects the overall performance
of program execution because it avoids the usage of probes
(see Section 2.2) by relying on readily available execution
log traces to determine coverage. Evaluation results indi-
cate that LOGCOCO achieves high precision in measuring
code coverage [10]. As stated by Chen et al., the coverage
information computed by LOGCOCO highly depends on the
number of logging statements in the source code [10]. This
implies that the performance of LOGCOCO may be limited
by the subject systems because the amount of logging state-
ments varies from system to system.

Log-based code coverage measurement is currently limited
to JAVA. Exception handling and conditional branches lead
to different program execution flows, and missing logging
statements on such critical points poses negative impacts on
the identification of causally related program execution flows
and failures.

3 LOG2COV: LOG-BASED CODE COVERAGE FOR
PYTHON

In this section, we present our solution to relax the con-
straint that LOGCOCO only works for JAVA programs. First,
we describe the implementation of LOG2COV, which begins
as a direct implementation of LOGCOCO for PYTHON pro-
grams (Section 3.1). We then present the design (Section 3.2)

4. https://coverage.readthedocs.io/en/6.4.1/
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Fig. 1. Overview of the design of LOG2COV.

and results (Section 3.3) of an evaluation regarding preci-
sion, recall, F1 score and performance overhead of this initial
version of LOG2COV. The limitations that we identified
during this initial evaluation inspire the key improvements
that we propose for LOG2COV (Section 3.4).

3.1 System Design

The design of LOG2COV is similar to that of LOGCOCO [10]
and contains four phases: (1) Program Analysis, (2) Log
Analysis, (3) Path Analysis, and (4) Coverage Estimation.
The LOG2COV design is illustrated in Figure 1.

3.1.1 Phase 1 – Program Analysis
The Program Analysis phase takes the program’s source
code as input to derive a mapping between LogREs and
their corresponding coverage information. A LogRE is a (se-
quence of) regular expression(s) composed during the anal-
ysis of the program. It denotes the occurrence of execution
flows of the program and is used to match against log traces
to reveal the code coverage [10]. For example, the LogRE
(module@3module@2)+ matches the location component
of the log trace module@3module@2module@3module@2,
where module refers to a source file name, and the numerals
refer to the lines where the log statements that generate this
given log trace appear.

We follow the same procedure as proposed by Chen et
al. [10] to analyze the source code of the program. We first
obtain the Abstract Syntax Tree (AST) of each method of the
program using PYTHON’s AST library. The obtained ASTs
are stored as files on disk, strictly following the project level
hierarchy. We then obtain a static call graph of the program
using PYCG, which has been shown to outperform other
tools for the same task [38]. The resulting call graph is
represented as a map in which the key is the caller and the
value is a list of callees. Both caller and callee are denoted
as the relative path to the method in dot notation. The call
graph shows the relative path of each method to the system
root directory, which enables us to chain together ASTs
associated with each method. Such a procedure involves
traversing the AST body of each method, identifying func-
tion calls, and replacing the callee’s name with the location
of the callee’s AST. Finally, we perform an AST traversal

for all methods’ ASTs to find all possible execution flows
of the program and generate the respective LogREs. During
the AST traversal, once we encounter a logging statement,
we record its module name and line number to compose
the LogRE. Similar to LOGCOCO, we label each statement as
Must-Covered, Must-Not-Covered, or May-Covered during
the construction of LogREs.

3.1.2 Phase 2 – Log Analysis

In this phase, we analyze the log files and form a string of
concatenated log sequences. A log sequence is composed of
multiple patterns of module@lineno, where each pattern
is extracted from a log trace.

We analyze log files by leveraging the log format, which
includes the timestamp, thread id, and location of each log
trace. We describe how we use each item below.

Timestamp is used to sort log traces. Since multiple log files
can be generated during testing (e.g., a log file of passed
tests and a log file of failed tests), we merge log traces from
multiple log files into one log file and then sort log traces by
their timestamp.

Thread ID is used to form log groups. A log group is a
group of log traces generated by a single thread of execu-
tion. Because tasks can execute concurrently, their generated
log traces may be interleaved in the log file [10]. To form log
sequences that indicate correct program execution flows, we
group log traces by their thread ID to construct log groups.

Location is the module name and line number of the log
statement from which the log trace is generated. We ex-
tract the location of the log trace to form the pattern of
module@lineno. Thus, for each log group, we build a log
sequence (a concentration of such patterns) with respect to
the timestamp.

After obtaining log sequences, we chain them to build a
string that can be used to match against LogREs.

Note that execution log files may contain the log traces
generated by external libraries. Since the scope of coverage
measurements is typically limited to the subject system’s
codebase, we exclude the log traces from libraries outside
the subject system’s codebase.
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TABLE 1
Overview of the candidate systems.

System #Commits #Files LOC #Logs Log Density Log Rank

saltstack/salt 113,265 6,207 711,159 8,511 1.20× 10−2 1
home-assistant/core 43,494 21,517 1,012,962 7,026 6.94× 10−3 2
openstack/nova 59,487 4,340 377,843 2,510 6.64× 10−3 3
edx/edx-platform 60,737 9,246 377,613 1,764 4.67× 10−3 4
cloudera/hue 34,120 8,050 1,611,784 3,894 2.42× 10−3 5
zulip/zulip 40,693 6,112 181,406 200 1.10× 10−3 6
dimagi/commcare-hq 158,124 7,516 393,528 311 7.90× 10−4 7
demisto/content 31,266 30,948 679,235 55 8.10× 10−5 8
ansible/ansible 46,249 5,583 143,326 3 2.09× 10−5 9
frappe/erpnext 20,186 29,716 151,811 2 1.32× 10−5 10

3.1.3 Phase 3 - Path Analysis
In this phase, we perform regular expression matching for
all LogREs within the log sequences, creating a coverage
database that contains mappings between a code statement
and its code coverage (Must-, May-, or Must-Not-Coverage).
A statement can have different code coverage labels in dif-
ferent LogREs. As suggested by Chen et al. [10], a statement
is considered in Must-Coverage if it is labelled as Must-
Covered by at least one LogRE. A statement is considered
in May-Coverage if it is not labelled as Must-Covered by
any LogRE but as May-Covered by at least one LogRE. A
statement is considered in Must-Not-Coverage if it is not
labelled as Must-Covered or May-Covered, but as Must-
Not-Covered by any of the LogREs.

3.1.4 Phase 4 – Coverage Estimation
In this phase, we estimate the proportion of the covered
code statements in the subject system. We use the coverage
database resulting from Phase 3 (Section 3.1.3). Since there
are code regions that are labelled as May-Covered, we
estimate the lower and upper bound of the coverage of the
entire system. The lower bound of coverage excludes May-
Covered statements and it is calculated as:

# of Must labels

Total # of labels

On the other hand, the upper bound of coverage includes
May-Covered statements and it is calculated as:

# of Must labels +# of May labels

Total # of labels

3.2 Exploratory Evaluation of Log2Cov (Design)
We conduct an exploratory study to evaluate LOG2COV
and assess its limitations. We compute its precision, recall,
F1 score, as well as the overhead that it incurs. We select
COVERAGE.PY as our baseline for comparison because it
is the most popular coverage tool for PYTHON [19]. More
specifically, we use the coverage report of COVERAGE.PY as
our ground truth and compare the coverage status of every
statement in our coverage database against the coverage
report of COVERAGE.PY.

3.2.1 Studied Systems
We perform our evaluation of LOG2COV over a set of
systems written in PYTHON that can benefit from LOG2COV.
More specifically, we begin with candidate PYTHON systems
that are large and active. We select large systems in terms
of the total number of files because we believe that small

systems have little to gain from a log-based coverage tool.
We also set activity (total number of commits) as a criterion
because the total number of commits is closely related to
activity density (commits per month and maximum consec-
utive months with commits) and high-profile repositories
tend to have a greater density of activity [37].

We curated our collection of candidate PYTHON sys-
tems from systems that are hosted on GITHUB. We started
by querying the public GITHUB dataset on GOOGLE BIG-
QUERY,5 and filtering systems by their source code lan-
guage. In total, we obtain 341,097 PYTHON systems. Next,
we sort these systems by their number of commits and files.
The rationale is to obtain an activity rank based on the num-
ber of commits and a size rank based on the number of files.
The overall rank for each system is determined by summing
its activity and size ranks, and then sorting the systems
in descending order by that sum. We then selected ten
candidate systems for measuring log density. We measured
log density because the log-based code coverage approach
is only suitable for systems that have a considerable density
of logging statements. A system is selected as a candidate if
the repository is not a fork and has over 80 stars (a common
heuristic used to fetch mature projects [7]). We started with
the top-ranked systems until we had selected 10 systems.
The log density was calculated according to Equation 1:

Log Density =
# Log Generating Lines of Code

# Source Lines of Code
(1)

Finally, among the ten candidate systems, we selected
the top three systems based on the log density to be our
subject systems. As shown in Table 1, SALTSTACK SALT,
HOME ASSISTANT CORE, and OPENSTACK NOVA stand out
among other candidates. For brevity, we henceforth refer
to these systems as SALT, HOME ASSISTANT, and NOVA,
respectively.

3.2.2 Execution Scenarios
We select testing as the execution scenario for its ubiquity
across our subject systems. Since LOGCOCO was evalu-
ated using testing scenarios [10], our choice ensures the
consistency in comparative evaluation of the performance
of LOG2COV. We selected available test suites from their
GITHUB repositories: unit and integration for SALT, unit for
HOME ASSISTANT, and unit and functional for NOVA. It is
worth mentioning that we did not choose the number of
tests or type of tests as the criteria in the system selection
stage because any quantity (or type) of tests is enough to
compare the results of COVERAGE.PY with LOG2COV.

For test simulation, we used a consistent format string of
1 "%(asctime)s %(created)f %(levelname)s

%(thread)d [%(name)s@%(lineno)d]
%(message)s"

↪→

↪→

for the log format across all the subject systems, in which the
%(created)f and %(thread)d stand for the timestamp
and thread id respectively. To ensure that the log traces
can be combined and analyzed properly, it is necessary to
have a consistent logging format containing the log message
attributes of created and thread. This is because we

5. https://cloud.google.com/bigquery/public-data
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need to ensure that: (1) the thread id is contained in the
resulting log traces to group log traces (see Section 3.1.2);
and (2) the timestamp is precise enough to sort the log traces
combined from multiple log files (note that asctime is in
the precision of millisecond, while created is the Unix time
in the precision of microsecond).

Meanwhile, each test suite was executed with DEBUG-
level logging and COVERAGE.PY to collect the execution logs
and coverage reports. Since we intend to evaluate LOG2COV
with different log densities, we filtered the DEBUG logs to
simulate INFO-level verbosity. We avoided re-running tests
at INFO verbosity to ensure consistency in the execution
logs for our comparative analysis of LOG2COV’s efficiency
under varying log verbosity levels. Compared to INFO
verbosity, DEBUG verbosity leads to an increase in both
the density of log statements within the source code, with
increases ranging from 52% to 91%, and the volume (lines
of log traces) of generated execution logs, with increases
ranging from 130% to 719%.

3.2.3 Benchmarking Results
As LOG2COV operates at line level, we use the line level
results of COVERAGE.PY as our ground truth to compute
performance scores for both Must-Coverage and Must-
Not-Coverage of LOG2COV. Since May-Coverage occurs,
we perform analyses that (a) exclude May-Coverage and
(b) consider May-Coverage as positive in the calculation.
Considering May-Coverage as positive means equating it
to Must-Coverage for Must-Coverage assessments and to
Must-Not-Coverage for Must-Not-Coverage assessments.

3.2.4 Overhead Measurement
We aim to assess the overhead incurred by LOG2COV and
compare it with that of COVERAGE.PY. We focus on both
online and offline overhead of execution time. Our experi-
ments were conducted on a server equipped with an Intel(R)
Xeon(R) CPU E5-1620 @ 3.60GHz and 64GB of RAM. We ran
the selected execution scenarios (see 3.2.2). Each execution
scenario was executed five times for both COVERAGE.PY
and LOG2COV overhead measurements.

Online Overhead is measured by quantifying the percent-
age increase in program execution time with COVERAGE.PY
and logging enabled. We define LOG2COV’s online over-
head as logging overhead because execution logs are the
only runtime requirement. To establish an upper bound for
LOG2COV’s online overhead, we measured the overhead as-
sociated with DEBUG-level logging, as it is the most verbose
logging level in the standard PYTHON logging parlance and
thus represents the most resource-intensive scenario. For the
baseline of logging overhead, we configured the log level to
be 1000 as it is larger than the numeric value of any standard
logging level, practically silencing all logging messages and
representing the minimal logging overhead scenario.

Offline Overhead, not directly affecting the system opera-
tions, is measured by the time COVERAGE.PY and LOG2COV
take to generate coverage results. Specifically, COVER-
AGE.PY’s time to produce an XML report based on collected
data and LOG2COV’s time for completing the phases of
Program, Log, and Path Analysis (As shown in Section 3.1).
We exclude LOG2COV’s Coverage Estimation phase because

TABLE 2
Exploratory Evaluation Result: Precision, Recall, and F1 Score

Test Log Level Precision (%) Recall (%) F1 Score (%)

Must Must-Not Must Must-Not Must Must-Not

w w/o w w/o w w/o w w/o w w/o w w/o

S U DEBUG 94 55 85 36 91 85 90 79 92 66 87 49
S U INFO 94 51 80 38 85 75 92 85 89 60 86 53
S I DEBUG 84 57 86 56 92 89 72 63 88 70 79 60
S I INFO 86 67 76 45 91 89 66 53 88 76 71 49
H U DEBUG 100 53 69 3 93 87 98 72 96 66 81 6
H U INFO 100 55 42 3 95 91 92 44 97 69 57 6
N U DEBUG 99 76 45 19 94 92 80 62 96 83 58 29
N U INFO 98 75 39 10 90 87 82 55 94 80 53 17
N F DEBUG 95 69 75 46 93 90 83 74 94 78 78 57
N F INFO 97 78 74 46 87 84 94 90 92 81 83 61

it contributes minimally to the overall processing time due
to its low complexity, and does not align with LOG2COV’s
core functionality of producing a coverage database.

3.3 Exploratory Evaluation of LOG2COV (Results)
Below, we present the results of our exploratory study.

3.3.1 Precision, Recall, and F1 Score
Our analysis reveals that some lines were not reported as
covered or uncovered by COVERAGE.PY. Specifically, we
observed that these excluded lines were the lines broken
up by the practice of line continuation,6 as well as the
first line of doc-strings (i.e., """). Since it is impractical
to manually inspect all such lines, we report two kinds
of metrics for Must- and Mut-Not-Coverage. One metric
considers the excluded lines to be true positive (correctly
labelled by LOG2COV), while the other considers them as
false positive (incorrectly labelled). For example, under the
precision part in Table 2, the left column of Must-Coverage
shows the precision for which we consider lines excluded by
COVERAGE.PY are correctly labelled, while the right column
shows the precision for which we consider lines excluded
by COVERAGE.PY are incorrectly labelled.

Table 2 shows the result of precision, recall and F1 score
when not considering May-Coverage. LOG2COV achieved
high precision for Must-Coverage measurement, ranging
from 84% to 100%. These precision measurements are on par
with those of Chen et al. [10], who observed Must-Coverage
precision values of 83%-100% when comparing LOGCOCO
to JACOCO (a popular instrumentation-based coverage tool
for JAVA) in 6 JAVA systems. The precision of Must-Not-
Coverage for the systems HOME ASSISTANT and NOVA are
lower than that of SALT, note that the log density of SALT
is greater than that of HOME ASSISTANT and NOVA. When
comparing within the same testing scenario, the precision
of Must-Not-Coverage is lower than the precision of the
Must-Coverage in most cases. Our observation of Must-
Not-Coverage precision does not align with that of Chen
et al. [10], who observed Must-Not-Coverage precision to
be 100% in all studied systems. However, we conclude that
log-based coverage measurement performs better for Must-
Coverage than for Must-Not-Coverage in terms of precision.
This is because the lack of log statements inside condi-
tional branches negatively affects the precision of Must-
Not-Coverage, particularly when conditional branches are
partially logged. For example, if there are log statements

6. https://peps.python.org/pep-0008/
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only in the if branch but not in the else branch, log-based
coverage measurement infers that the else branch does not
get executed, even though it may have been executed in
certain system execution flows.

Table 2 also indicates how the precision, recall, and
F1 score are influenced by the change in log density. We
observed that the precision for Must-Coverage and recall for
both Must- and Must-Not-Coverage remains largely consis-
tent when reducing the log density (from DEBUG to INFO
verbosity). This suggests that LOG2COV’s performance, in
terms of recall for both Must- and Must-Not-Coverage
and precision for Must-Coverage, is largely unaffected by
additional log density beyond the INFO level of logging.
The precision for Must-Not-Coverage decreased by up to
27 percentage points with the reduction of log density.
This trend aligns with our finding that Must-Not-Coverage
precision relies more heavily on the density of logging
statements. Fewer logging statements, as is the case with
INFO verbosity, result in reduced precision in identifying
unexecuted code. We also observed that F1 scores vary
across different settings (i.e., test type, log level). We believe
that this is the case because precision and recall vary across
different settings. Each row in Table 2 represents the evalua-
tion metrics for a specific setting (i.e., execution scenario and
log level). Different settings may activate distinct execution
paths, each with varying log placement and log densities.
Under these conditions, it is expected that we observe
variance in the evaluation metrics (Precision, Recall, and
F1 score). Meanwhile, an increase in uncertainty was also
observed when the log verbosity was decreased. Indeed,
the decrease in verbosity results in a transfer of Must- and
Must-Not-Coverage to May-Coverage. Specifically, under
the five testing scenarios across the three subject systems,
we observed that the magnitude of the transfer reached up
to 3% when the verbosity decreased from the DEBUG to the
INFO level. This increase in uncertainty is expected, given
that fewer logging statements being recorded equates to less
information being available for analysis. Our observation
aligns with the implication drawn in the LOGCOCO’s paper,
i.e., that additional instrumentation of logging can reduce
the amount of May-Coverage [10]. Based on these findings,
we conclude that systems with denser logging (e.g., using
DEBUG verbosity) allow execution to generate more logs.
The increase in data points enhances the accuracy and
certainty of log-based coverage measurement, particularly
regarding the precision of Must-Not-Coverage and a reduc-
tion of uncertainty.

When considering May-Coverage as positive, we ob-
served that the precision of Must-Coverage dropped while
the precision of Must-Not-Coverage increased. Whether the
May-Coverage is covered or not depends on the execution
scenarios. In our study, the changes in precision imply that
May-covered lines are more likely to be not covered. We
also observed that the recall for both Must- and Must-
Not-Coverage increases when we consider May-Coverage
as positive. This observation aligns with our intuition that
recall tends to increase when May-Coverage is considered.
Due to the page limit, we include the table with May-
Coverage as positive in our replication package.7

7. https://zenodo.org/doi/10.5281/zenodo.7729838

Fig. 2. Online overhead of Coverage.py and Log2Cov.

Fig. 3. Offline overhead of Coverage.py and Log2Cov.

3.3.2 Overhead
Figure 2 shows the online overhead of COVERAGE.PY and
LOG2COV for the five test scenarios. Within each test sce-
nario, the figure shows the average (mean) performance
overhead (in percentage) as well as the confidence intervals
across five repeated runs. The results indicate that the
average overhead for COVERAGE.PY across different test
suites ranges from 28% to 75%. This level of overhead
shows the large performance cost that instrumentation-
based techniques incur. In contrast, we observed that log-
ging overhead is minimal (<3% on average) across all
scenarios. This demonstrates that, in practice, even the most
verbose logging setting (DEBUG level) imposes consider-
ably less overhead than COVERAGE.PY in all scenarios.
Meanwhile, we performed the Mann-Whitney U test for
comparing the overhead distributions of COVERAGE.PY and
LOG2COV across the five execution scenarios, with each
scenario treated as an independent test. By applying Holm-
Bonferroni correction, we adjusted the significance level
to 0.01 (0.05 divided by 5). The result shows that COV-
ERAGE.PY introduced a significantly larger overhead than
LOG2COV in every execution scenario. Considering that on-
line overhead is a critical factor for a running system, we ar-
gue that log-based coverage measurement, as implemented
in LOG2COV, can directly address the problem of the large
performance cost that is incurred by instrumentation-based
coverage measurement techniques.

https://zenodo.org/doi/10.5281/zenodo.7729838
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Figure 3 shows that the offline overhead of LOG2COV
is significantly higher than that of COVERAGE.PY, which
can extend to several hours in some scenarios. The offline
overhead for LOG2COV and COVERAGE.PY vary across
execution scenarios. The variations in LOG2COV’s process-
ing time within the same subject system are due to the
variations of the overhead in Path Analysis phase, as Pro-
gram Analysis and Log Analysis phases are identical in
the context of processing the same subject system. Despite
the higher offline overhead, LOG2COV’s processing can be
scheduled during non-peak hours to mitigate the negative
impact on user experience. Users can further decompose
LOG2COV’s execution by executing each of its phases sepa-
rately. For example, Program Analysis phase can be sched-
uled upon the update of the system under analysis. When
there is a need to measure coverage for a specific execution
scenario, users can proceed with Log Analysis and Path
Analysis phases.

3.4 Limitations of Log-based Coverage Measurement
Although LOG2COV achieved high precision, recall, and F1
score in measuring statements labelled as Must-Coverage
and Must-Not-Coverage, we noticed two areas in which
there is plenty of room for improvement.

3.4.1 Uncertainty
Our exploratory evaluation reveals that, across all execution
scenarios, the proportion of lines labeled as May-Covered
reached up to 69%. This level of uncertainty is likely beyond
what users would tolerate. Chen et al. [10] stated that it
is the developer’s responsibility to add logging statements
to reduce such uncertainty. In theory, uncertainty can be
addressed by logging in a complete way (i.e., logging en-
try into every conditional branch and exception handling
block). However, such an approach is impractical in real-
world applications. Logging extensively across the system
can lead to unacceptable performance overhead and in-
flation of execution logs, which poses challenges for log
retention, problem diagnosis and automated log analysis.

Although there are studies suggesting logging strate-
gies [13, 26, 27, 47, 50, 52] and analyzing developers’ log-
ging practices [8, 14, 48], logging is often incomplete and
inconsistent across systems. Thus, we propose an approach
to reduce uncertainty without requiring additional logging.
Our approach not only circumvents the practical challenges
of extensive logging but also makes log-based coverage
measurement more adaptable across systems and environ-
ments. The intuition behind our approach is that branching
expressions typically test variable values (e.g., if (a >
10), where a is a variable), and that the runtime values of
these variables may be inferred by the prior log messages.
Hence, to infer variable settings (and heuristically evaluate
the branching expression), we propose an application of
program slicing and data flow analysis.

3.4.2 Imprecision
For mislabelled lines, we randomly selected a set of them for
manual root cause inspection. For example, if a line foo@10
was mislabelled as Must-Covered, we used the execution
log file of LOG2COV (not from the SUT) to retrieve the

LogRE of which the Must-Coverage contains this line. We
also identified the corresponding method that was the entry
point for LOG2COV to produce such a LogRE. We then
manually inspected the program execution flows starting
from that method to reason about the cause of mislabelling.
After inspecting 200 examples, we observed the following
repetitive root causes of mislabelling: 1) the practice of
dependency injection and 2) the lack of logging statements
in conditional blocks.

Although we did not identify causes of imprecision
that are related to syntax and specifications of PYTHON,
we recognize that they may impact the precision of log-
based coverage measurement. This is because log-based
coverage measurement relies on call graphs to simulate
program execution flow, and the process of call graph
generation can be inherently sensitive to syntax variations.
Imprecision in call graph generation can result in inaccurate
function call invocations, thereby impacting the precision
of coverage measurement. In the case of PYTHON, which
is known for its dynamic features, creating an accurate call
graph is particularly challenging. To address this issue, we
used PYCG (see Section 3.1.1). PYCG is adept at handling
PYTHON’s dynamic characteristics, including modules, gen-
erators, function closures, and multiple inheritance. It has
reported a precision of 99.2% and a recall of 69.9%. This
high precision of PYCG may help to explain why we did
not detect cases where inaccurate function call invocation
leads to imprecision.

Without requiring additional logging statements, im-
provements can be made to resolve the imprecision caused
by dependency injection. In unit testing, the practice of
mocking and patching techniques (a type of dependency in-
jection) can cause imprecision of the measurement for both
Must- and Must-Not-Covered labels. Mocking is a common
approach in object-oriented software development to sim-
ulate software dependencies, speed up the testing process,
and confine the scope of testing to the component under
test [32]. According to PYTHON documentation,8 patching
is used for replacing methods and attributes of existing
objects with mocks. An internal method in the codebase
can be replaced by a mocked object using the patching
technique, and this diverts away from the statically defined
flows. In our replication package,7 we provide an example
of how dependency injection and insufficient logging lead
to mislabelling, as well as a detailed explanation.

4 RQ1: TO WHAT EXTENT CAN WE REDUCE THE
UNCERTAINTY OF LOG-BASED CODE COVERAGE?
Users have come to expect coverage measurements to be
precise about the status of program elements, i.e., statements
are either covered or not covered; however, the log-based
coverage approach may report that the status of a block
of program elements is uncertain (i.e., May-Coverage). This
uncertainty tends to arise when log statements are absent
from conditional blocks and exception handling blocks.
While log statements in such blocks provide hints about the
execution of statements within them, they are not the only
method that an observer can use to determine whether the

8. https://docs.python.org/3/library/unittest.mock.html

https://docs.python.org/3/library/unittest.mock.html
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Algorithm 1: Trace definition of a targeting variable
Input: var, def-use chains, call graph
Output: resultMap

1 Function Slicing(var):
2 Initialize an empty map resultMap
3 defList← GetDEFs(var, def-use chains)
4 if defList is not empty then
5 foreach DEF in defList do
6 if DEF contains other variables then
7 foreach otherVar in DEF do
8 varMap← Slicing(otherVar)
9 Merge varMap into resultMap

10 else
11 if var not in resultMap then
12 resultMap[var]← empty list
13 Append DEF to resultMap[var]

14 else
15 if var is a function parameter then
16 callerFuncs← GetCallers(var, call

graph)
17 foreach callerFunc in callerFuncs do
18 arg← GetArg(var, callerFunc)
19 Initialize an empty map varMap
20 if arg contains variables then
21 foreach otherVar in arg do
22 varMap← Slicing(otherVar)

23 DEF← BuildDef(arg, varMap)
24 if var not in resultMap then
25 resultMap[var]← empty list
26 Append DEF to resultMap[var]

27 return resultMap

statements inside such blocks are actually executed during
runtime. For example, practitioners may combine hints from
log messages with a careful inspection of the codebase to
reason about the settings of variables that are referenced in
conditional expressions, which may ultimately identify the
path of execution. Inspired by this intuition about how prac-
titioners analyze logs and code, we propose an approach to
mitigate the uncertainty of log-based coverage by resolving
May-Coverage caused by if-else conditional blocks. We
call our approach “Resolve May-Coverage”.

To evaluate our approach, we apply “Resolve May-
Coverage” to the coverage database of DEBUG-level sce-
narios obtained in our exploratory evaluation (see Sec-
tion 3.3). We compare each line in the resolved coverage
to the report generated by COVERAGE.PY. Meanwhile, we
measure the amount of May-Coverage that resides in condi-
tional branches of which the conditional statement is Must-
Covered, and we refer to this as “Resolvable Coverage”.
Additionally, we measure the execution time of “Resolve
May-Coverage” phase, repeating five times for each execu-
tion scenario. Subsequently, we use LOG2COV’s execution
time (reported in Section 3.3.2) to assess the offline overhead
attributed to this phase. The details of our approach are
explained below.
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Fig. 4. Resolve May-Coverage Phase.

Approach. To resolve May-Coverage statements, we append
the “Resolve May-Coverage” phase to the “Path Analysis”
phase of Section 3.1.3. This phase takes as input the system’s
source code, call graph, execution logs, and the coverage
database generated by the “Path Analysis” phase to pro-
duce a mapping of resolved May-Covered statements to
their coverage status. Figure 4 provides an overview of the
“Resolve May-Coverage” phase, which we describe below.

(1) Locate targeting statements: We locate the conditional
statements of interest by analyzing the system’s codebase
and traversing the module’s AST to identify if-else state-
ments. We query the coverage database to determine if the
conditional statement is Must-Covered and the associated
code region, i.e., the statements within conditional blocks,
is May-Covered. We refer to such an if-else statement
as the targeting statement, and the variable within the
targeting statement as the targeting variable.

(2) Trace the definition of variables in the targeting statement:
We perform backward slicing [15] and data-flow analysis
based on the module’s AST and the module level def-use
chains. The def-use chains are computed using BENIGET.9

Each def-use chain links an identifier’s USE to its DEF [45].
For each targeting variable, we trace its DEF. As illus-

trated in Algorithm 1, we begin by finding the closest DEF
or USE of the targeting variable, where the USE needs to be
a log statement that logs the targeting variable (line 3). If a
USE is found, we construct a DEF using the value extracted
from the log trace. A targeting variable can have multiple
DEFs identified because there can be multiple definitions
coexisting under different conditions. These definitions do
not reassign the variable but rather establish different initial
values for it depending on the execution flow. In cases
where other variables are involved in the collected DEF, we
add those variables as targeting variables and recursively
apply backward slicing to trace their DEF/USE (lines 6-9).

9. https://github.com/serge-sans-paille/beniget
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TABLE 3
Performance of Resolve May-Coverage.

Test Resolvable Resolved Accuracy Overhead

S U 401 44 (11%) 100% 2%
S I 83 2 (2%) 100% 1%
N U 559 13 (2%) 100% 12%
N F 92 2 (2%) 100% 4%
H U 581 5 (1%) 100% 7%

If we cannot identify the DEF/USE based on the module-
level def-use chain, we check if the targeting variable is
a function parameter (line 15). If so, we use the call graph
(as obtained in phase 3.1.1) to locate the caller functions
of the function in which the targeting variable resides (line
16). Note that we collect the caller function only if the
statement of that function call is labelled as Must-Covered
in the original coverage database. For each collected caller
function, we trace the function call to obtain the value of the
targeting variable, which is provided as an argument, and
then construct its DEF (lines 17-26).

After tracing the DEF of each variable in the targeting
statement, we obtain a mapping that links each variable to
its corresponding DEFs, preserving the dependency order.

(3) Compute the condition for the targeting statement and label
LOCs: We apply the Cartesian product to generate all possi-
ble combinations of values for the variables in the targeting
statement. For each combination, we construct and evaluate
the code snippet representing the conditional expression
of the targeting statement. The overall condition result is
determined by evaluating the conditional expression with
different variable inputs, leading to three possible outcomes:
True, False, or both. When the outcome is either True or False,
it indicates that all input combinations result in the same
conditional value. When the outcome is both True and False,
it means that the expression evaluates to True for some input
combinations and False for others.

After obtaining the branch selection result of an
if-else condition, we label the statements in the branches
accordingly. For example, if the branch selection result is
computed as True, we label the statements in the if-branch
as Must-Covered; and if there are any elif branches or
an else branch, then the statements in those branches are
labelled as Must-Not-Covered. In addition, we label the
statements of the callee function in the conditional branches
if they are initially labelled as May-Covered. Similar to
the PATH ANALYSIS phase, a statement is considered as
Must-Coverage if it is labelled as Must-Covered by at least
one analysis of the targeting statement, and a statement
is considered as Must-Not-Coverage if no analysis of the
targeting statement labels it as Must-Covered. An example
demonstrating our approach to resolving uncertainty is
provided in our replication package.7

Results. Table 3 provides an overview of the performance.
The column “Resolvable” indicates the quantity of May-
Coverage that is identified as being able to resolve, and the
column “Resolved” shows the quantity of May-Coverage
resolved to Must-Coverage or Must-Not-Coverage by our
approach. In SALT, NOVA, and HOME ASSISTANT, our ap-
proach achieved 100% accuracy in resolving May-Coverage

compared with the report of COVERAGE.PY. Meanwhile,
we found that COVERAGE.PY excluded some lines. Since
we manually inspected all such cases, there is no need to
consider the excluded lines as incorrectly labelled. Further-
more, we observed that the ”Resolve May-Coverage” phase
imposes a minimal offline overhead, with mean values
ranging from 1% to 12% across the execution scenarios.
Discussion. After conducting an evaluation on our ap-
proach of “Resolve May-Coverage” with five testing sce-
narios across the three subject systems, our approach has
demonstrated its effectiveness in resolving May-Coverage.
The accuracy of 100% suggests that our approach is capable
of accurately resolving May-Coverage in different contexts,
making our approach reliable for practitioners seeking to
improve log-based code coverage without requiring addi-
tional logging statements in log-sparse conditional blocks.

While the quantity of resolvable May-Coverage resolved
by our approach was up to 11%, this still represents a
considerable reduction in the uncertainty of log-based code
coverage. Additionally, we observed that the number of
May-Covered lines resolved tended to be consistent across
the three subject systems, with a difference of only 10
percentage points. One important factor to note is that
our approach skips evaluating conditions if the targeting
variables are dependent on function calls, except for log
statements, during the backward slicing process. This en-
sures that the performance of our approach is not hindered
by dependencies that are outside of the control of the SUT.
As seen in Table 3, the quantities of resolved May-Coverage
suggest that the involvement of function calls in the data
flow of the targeting variable is large and similar across the
subject systems.

In addition, our approach does not resolve May-
Coverage incorrectly. This means that practitioners can
confidently use our approach without fear of negatively
affecting the performance of LOG2COV. However, if prac-
titioners wish to expand the resolvable uncertainty and the
resolved quantity of such uncertainty, future work can be
done on handling conditional statements and exception-
handling blocks by the data flow analysis that involves
external dependencies. This could potentially improve the
performance of our approach in resolving the uncertainty in
log-based code coverage measurement.

5 RQ2: TO WHAT EXTENT CAN WE REDUCE THE
IMPRECISION OF LOG-BASED CODE COVERAGE?

Imprecision is hardly accepted in an analysis where out-
comes must be assertive. Without requiring developers to
add logging statements to the source code, we explore the
extent to which imprecision can be improved by addressing
dependency injection, in particular by identifying methods
that are replaced by mock objects during unit testing.
Approach. We modify the Program Analysis phase of
LOG2COV by adding a new step namely “Remove Depen-
dency”. This step takes the linked ASTs (see Section 3.1.1) as
input and removes the ASTs of the methods that are iden-
tified as being replaced by mock objects with the patching
technique (see Section 3.4.2). We explain the details of the
“Remove Dependency” step below.
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TABLE 4
Performance of LOG2COV w&wo resolving dependency injection.

System Resolve
Dependency

Precision
Must Must-Not

Salt No 94% 55% 85% 36%
Yes 95% 56% 87% 38%

Home
Assistant

No 100% 53% 69% 3%
Yes 100% 54% 69% 3%

Nova No 99% 76% 45% 19%
Yes 99% 76% 49% 20%

(1) Dependency Identification: In this step, we identify target-
ing methods (methods that are replaced by mock objects
by analyzing all the test modules of each subject system).
For each test module, we traverse its AST to identify the
use of patching. In PYTHON, such a usage pattern invokes
either the patch() or the patch.object() function of
the PYTHON’s mock library.8 The difference between these
two functions is how they resolve the naming hierarchy
of the targeting method. The patch.object() function
requires the module/class containing the targeting method
to be imported before patching, and patch() takes a string
of a path and resolves it to a method. To collect the full
relative path to a targeting method, we build a mapping
between the module/class name and its relative path by
analyzing the import-related nodes in the AST of the test
module. In our replication package,7 we provide an example
of patching that demonstrates the use cases of the two
different functions, as well as the result of the dependency
identification.
(2) Dependency Removal: In this step, we remove the AST
files of the methods that are patched with mock objects. This
step ensures the Program Analysis phase does not traverse
to them, which causes imprecision.

We evaluate LOG2COV on the same subject systems with
the updated Program Analysis phase. Specifically, we re-
execute the Program Analysis and Path Analysis phases of
LOG2COV to obtain the new coverage database for DEBUG-
level scenarios. We then compare the precision of Must-
and Must-Not-Coverage with our prior results (Section 3.2),
respectively. In addition, we measure the execution time
of the Program Analysis and Path Analysis phases, both
with and without “Remove Dependency”, to understand its
impact on offline overhead.
Results. Table 4 demonstrates the results of our approach.
There is a 1 percentage point increase in the precision
of Must-Coverage, and a 2 percentage point increase in
Must-Not-Coverage precision in SALT. In NOVA, there is
an improvement of up to 4 percentage points. Regarding
HOME ASSISTANT, there is a 1 percentage point increase in
the precision of Must-Coverage when we consider the lines
excluded by COVERAGE.PY are incorrectly labelled. More-
over, the mean execution time for Program Analysis and
Path Analysis, when applying the ”Remove Dependency”
step, is consistently shorter compared to scenarios excluding
this step. This indicates that our approach introduces no
additional offline overhead.
Discussion. We observed that SALT benefited the most from
our approach. Since the amount of dependency injection can
vary in different systems, it is reasonable that the improve-

ments of our approach vary. Although improvements are
not guaranteed, our approach does not harm the perfor-
mance of LOG2COV in any subject systems, suggesting it
is at the very least safe to be consistently enabled.

6 THREATS TO VALIDITY

Construct Validity. In this paper, we use COVERAGE.PY to
obtain the “ground-truth” of coverage status. COVERAGE.PY
may not reflect the exact coverage, since it may contain bugs
itself. However, COVERAGE.PY is quite mature and stable,
and is the de facto standard coverage tool recommended by
the official PYTHON documentation.10

Internal Validity. We evaluate LOG2COV using the SALT,
HOME ASSISTANT, and NOVA systems, which have the
greatest log density, and are among the largest and most
active PYTHON systems on GITHUB. Our study results may
only reflect the performance of our approach to systems that
have a sufficient amount of logging statements. However,
the very nature of the log-based coverage measurement is
to leverage log traces. Hence, log-based coverage measure-
ment is not applicable to every system. Indeed, while this
paper sets out to improve the imprecision and uncertainty of
log-based coverage measurements when entering log-sparse
areas of code, we still rely upon log traces to minimize the
scope in which our static analyses will be performed.
External Validity. We adapt the log-based coverage mea-
surement to PYTHON. Our results may not generalize to
systems written in other languages (e.g. JAVASCRIPT). How-
ever, the primary technical requirements of porting log-
based coverage to another language are AST parsers and
static call graphs, which are generally available for many
programming languages. While the amount of effort re-
quired is not small, it is not an insurmountable challenge.

We propose a solution to the imprecision problem by
addressing the challenge of patching in unit testing. Since
patching is a subset of dependency injection, our approach
may be limited to measuring coverage in a unit testing
scenario. However, the core of our approach is to make
LOG2COV infer the system execution flow as expected in the
execution scenarios. In the unit testing scenario, we identify
the methods replaced by mock objects, and remove the
identified methods from both the call graph and the linked
ASTs so that LOG2COV does not have the knowledge that
those methods are involved in the system execution flow.
For other dependency injection scenarios, we only need to
identify the injection pattern and identify the methods being
injected, then modify the call graph accordingly. For exam-
ple, we can add the dependency as a callee of the method
that is being injected. However, the idea of manipulating the
call graph and correcting the execution flow in the analysis
remains the same. Therefore, we believe our approach is
applicable to any dependency injection technique.

7 CONCLUSIONS AND IMPLICATION

Code coverage is a common measurement that practitioners
rely upon. While modern code coverage tools provide valu-
able insights, they impose a performance overhead due to
code instrumentation. In this study, we have demonstrated

10. https://docs.python.org/3/library/trace.html
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that log-based code coverage tools offer a promising alter-
native to traditional code instrumentation approaches for
PYTHON systems. By developing and evaluating LOG2COV,
we have shown that analyzing the program and its execu-
tion logs can be an effective way to measure coverage for
PYTHON systems, and improvements of log-based coverage
measurement can be made without requiring additional
logging instrumentation from developers. To the best of our
knowledge, our approach is the first work that directly ad-
dresses the shortcomings of imprecision and uncertainty of
log-based coverage measurement. While our enhancements
make substantial improvements to mitigate such shortcom-
ings, future work is still needed to achieve parity with
instrumentation-based coverage approaches. For example,
we are actively exploring using a similar approach as we
resolve uncertainty to evaluate the if-else condition that
results in false negative (mislabelled Must-Not-Coverage) to
further reduce imprecision and leveraging the development
environment of the SUT, which contains required dependen-
cies, to further reduce uncertainty. Moreover, our natural
next step is to combine the log-based approach and the
instrumentation-based approach—using LOG2COV in gen-
eral and instrumentation-based approach (COVERAGE.PY)
in log-free code block to complement the log-based result.
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