Are Fix-Inducing Changes a Moving Target? A Longitudinal Case Study of Just-In-Time Defect Prediction

Authors - Shane McIntosh, Yasutaka Kamei
Venue - IEEE Transactions on Software Engineering, Vol. 44, No. 5, pp. 412–428, 2018

Related Tags - TSE 2018 software quality defect prediction

Abstract - Just-In-Time (JIT) models identify fix-inducing code changes. JIT models are trained using techniques that assume that past fix-inducing changes are similar to future ones. However, this assumption may not hold, e.g., as system complexity tends to accrue, expertise may become more important as systems age.

In this paper, we study JIT models as systems evolve. Through a longitudinal case study of 37,524 changes from the rapidly evolving Qt and OpenStack systems, we find that fluctuations in the properties of fix-inducing changes can impact the performance and interpretation of JIT models. More specifically: (a) the discriminatory power (AUC) and calibration (Brier) scores of JIT models drop considerably one year after being trained; (b) the role that code change properties (e.g., Size, Experience) play within JIT models fluctuates over time; and (c) those fluctuations yield over- and underestimates of the future impact of code change properties on the likelihood of inducing fixes. To avoid erroneous or misleading predictions, JIT models should be retrained using recently recorded data (within three months). Moreover, quality improvement plans should be informed by JIT models that are trained using six months (or more) of historical data, since they are more resilient to period-specific fluctuations in the importance of code change properties.

Preprint - PDF

Slides

Bibtex

@article{mcintosh2018tse,
  Author = {Shane McIntosh and Yasutaka Kamei},
  Title = {{Are Fix-Inducing Changes a Moving Target? A Longitudinal Case Study of Just-In-Time Defect Prediction}},
  Year = {2018},
  Journal = {IEEE Transactions on Software Engineering},
  Volume = {44},
  Number = {5},
  Pages = {412–428}
}